### A Fully Bayesian Framework for Built-in Input Dimension Reduction and Gaussian Process Modeling

Eric Herrison Gyamfi Joint work with Emily L. Kang and Alex Konomi

University of Cincinnati

Joint Statistical Meetings Aug 03, 2025

### Outline of Presentation

Introduction

Methodology

Numerical Results

Conclusion and Discussion

• Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).

- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- Limitation: GPs scale poorly in high dimensions accuracy drops and computation becomes costly (curse of dimensionality).

- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- **Limitation:** GPs scale poorly in high dimensions accuracy drops and computation becomes costly (**curse of dimensionality**).
- Conventional approach: Dimensionality reduction → GP modeling (two-stage pipeline) [1, 4, 5, 9, 11, 13, 17].

- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- **Limitation:** GPs scale poorly in high dimensions accuracy drops and computation becomes costly (**curse of dimensionality**).
- Conventional approach: Dimensionality reduction → GP modeling (two-stage pipeline) [1, 4, 5, 9, 11, 13, 17].

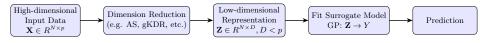


- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- **Limitation:** GPs scale poorly in high dimensions accuracy drops and computation becomes costly (**curse of dimensionality**).
- Conventional approach: Dimensionality reduction → GP modeling (two-stage pipeline) [1, 4, 5, 9, 11, 13, 17].



• **Recent works:** Emerging gradient-free methods exist but often lack a *fully Bayesian* framework [6, 14].

- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- **Limitation:** GPs scale poorly in high dimensions accuracy drops and computation becomes costly (**curse of dimensionality**).
- Conventional approach: Dimensionality reduction → GP modeling (two-stage pipeline) [1, 4, 5, 9, 11, 13, 17].



- **Recent works:** Emerging gradient-free methods exist but often lack a *fully Bayesian* framework [6, 14].
- Our contribution: A unified, fully Bayesian GP with integrated dimension reduction.

## **Key Contributions**

 Proposes a fully Bayesian framework that unifies dimensionality reduction and Gaussian process modeling.

## **Key Contributions**

- Proposes a fully Bayesian framework that unifies dimensionality reduction and Gaussian process modeling.
- Enforces orthonormal projection matrices via prior on the Stiefel manifold and HMC with geodesic flows.

# **Key Contributions**

- Proposes a fully Bayesian framework that unifies dimensionality reduction and Gaussian process modeling.
- Enforces orthonormal projection matrices via prior on the Stiefel manifold and HMC with geodesic flows.
- Extends the model to Deep GP (DGP) for handling complex, high-dimensional inputs.

• Let  $\mathbf{x} \in \mathbb{R}^p$  be p- high-dimensional inputs and  $y=f(\mathbf{x}): \mathcal{R}^p \to \mathcal{R}$  the response.

- Let  $\mathbf{x} \in \mathbb{R}^p$  be p- high-dimensional inputs and  $y=f(\mathbf{x}): \mathcal{R}^p \to \mathcal{R}$  the response.
- Let  $\mathbf{z} = W^T \mathbf{x} \in \mathbb{R}^D$  be D- low-dimensional inputs via projection matrix,  $W \in \mathbb{R}^{p \times D}$  and  $g(\mathbf{z}) : \mathcal{R}^D \to \mathcal{R}$  link function.
- ullet Assume  ${f W}$  defined on Stiefel manifold,  ${\cal V}_{p,D}$

$$\mathcal{V}_{p,D} = \{ W \in \mathcal{R}^{p \times D} : W^T W = \mathcal{I}_D \}, \quad \mathcal{I}_D = \text{identity matrix}$$

- Let  $\mathbf{x} \in \mathbb{R}^p$  be p- high-dimensional inputs and  $y=f(\mathbf{x}): \mathcal{R}^p \to \mathcal{R}$  the response.
- Let  $\mathbf{z} = W^T \mathbf{x} \in \mathbb{R}^D$  be D- low-dimensional inputs via projection matrix,  $W \in \mathbb{R}^{p \times D}$  and  $g(\mathbf{z}) : \mathcal{R}^D \to \mathcal{R}$  link function.
- ullet Assume  ${f W}$  defined on Stiefel manifold,  ${\cal V}_{p,D}$

$$\mathcal{V}_{p,D} = \{W \in \mathcal{R}^{p \times D} : W^T W = \mathcal{I}_D\}, \quad \mathcal{I}_D = \text{identity matrix}$$

- Goal: replace costly  $f(\mathbf{x})$  with  $g(\mathbf{z})$ , assuming  $f(\mathbf{x}) \approx g(\mathbf{z})$ .
- W maps  $\mathbb{R}^p \to \mathbb{R}^D$  where D < p, enabling dimension reduction (DR) in GP modeling.

- Let  $\mathbf{x} \in \mathbb{R}^p$  be p- high-dimensional inputs and  $y=f(\mathbf{x}): \mathcal{R}^p \to \mathcal{R}$  the response.
- Let  $\mathbf{z} = W^T \mathbf{x} \in \mathbb{R}^D$  be D- low-dimensional inputs via projection matrix,  $W \in \mathbb{R}^{p \times D}$  and  $g(\mathbf{z}) : \mathcal{R}^D \to \mathcal{R}$  link function.
- ullet Assume  ${f W}$  defined on Stiefel manifold,  ${\cal V}_{p,D}$

$$\mathcal{V}_{p,D} = \{W \in \mathcal{R}^{p \times D} : W^T W = \mathcal{I}_D\}, \quad \mathcal{I}_D = \text{identity matrix}$$

- Goal: replace costly  $f(\mathbf{x})$  with  $g(\mathbf{z})$ , assuming  $f(\mathbf{x}) \approx g(\mathbf{z})$ .
- W maps  $\mathbb{R}^p \to \mathbb{R}^D$  where D < p, enabling dimension reduction (DR) in GP modeling.
- For n input points and  $Y=(y_1,\cdots,y_n)^T\in\mathbb{R}^n$ , GP model is defined on  $Z=(\mathbf{z_1},\cdots,\mathbf{z_n})^T\in\mathbb{R}^{n\times D}$ :

$$Y \sim \mathsf{GP}(\mu_Y, \Sigma(Z)), \quad \Sigma(Z) = \tau^2[C(Z; \theta_D, W) + g]$$

•  $\tau^2$  is process variance, g is nugget,  $C(Z;\theta_D,W)$  is an isotropic kernel with lengthscale  $\theta_D$  and  $\mu_Y=0$ .

#### **Limitations of Standard GPs:**

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns.

#### Limitations of Standard GPs:

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns.

#### **Limitations of Standard GPs:**

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns .

- Adapt to changing relationships across input regions(non-stationary).
- Stack multiple GPs layers to:

#### Limitations of Standard GPs:

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns.

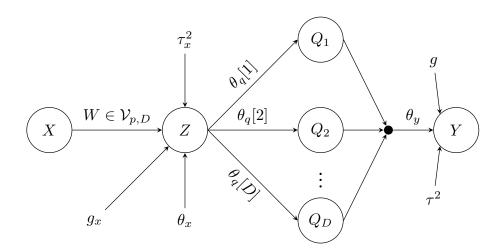
- Adapt to changing relationships across input regions(non-stationary).
- Stack multiple GPs layers to:
  - Model varying smoothness.

#### **Limitations of Standard GPs:**

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns .

- Adapt to changing relationships across input regions(non-stationary).
- Stack multiple GPs layers to:
  - Model varying smoothness.
- Maintain GP strengths:
  - Accurate predictions.
  - Reliable uncertainty estimates.

# Two-layer DGP Model with built-in Dimension Reduction



## Two-layer DGP Model with built-in Dimension Reduction

$$Q_{j} \sim^{\mathsf{ind}} \mathcal{N}(0, C_{\theta_{Q}[j], W}(Z)), \quad Q_{j} \in \mathbb{R}^{n}, \quad W \in \mathcal{V}_{p, D}, \quad j = 1, \dots, D.$$

$$\theta_{Q} = (\theta_{Q}[1], \dots, \theta_{D}[D]) \in \mathbb{R}^{D}, \quad Q = [Q_{1}, \dots, Q_{D}] \in \mathbb{R}^{n \times D}$$

$$Y \mid Q \sim \mathcal{N}(0, \tau^{2}[C_{\theta_{y}}(Q) + g\mathcal{I}_{n}])$$

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid Q)\mathcal{L}(Q \mid Z) dWdQ$$

## Two-layer DGP Model with built-in Dimension Reduction

$$\begin{aligned} Q_j \sim^{\mathsf{ind}} \mathcal{N}(0, C_{\theta_Q[j], W}(Z)), \quad Q_j \in \mathbb{R}^n, \quad W \in \mathcal{V}_{p, D}, \quad j = 1, \dots, D. \\ \theta_Q &= (\theta_Q[1], \cdots, \theta_D[D]) \in \mathbb{R}^D, \quad Q = [Q_1, \cdots, Q_D] \in \mathbb{R}^{n \times D} \\ Y \mid Q \sim \mathcal{N}(0, \tau^2[C_{\theta_y}(Q) + g\mathcal{I}_n]) \\ \mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid Q) \mathcal{L}(Q \mid Z) \, dW dQ \end{aligned}$$

- Q: Latent variable and  $Q_1, \dots, Q_D$  be the latent nodes
- $C_{\theta}(\cdot)$ : Covariance function with parameters  $\theta$ .
- $\theta_Q, \theta_y$ : Covariance hyperparameters for latent/output layers.
- $g, g_x$ : Nugget terms (noise parameters).
- $\tau^2, \tau_r^2$ : Variance scale parameters.

$$W \sim \mathcal{ML}(W; F), W \in \mathcal{V}_{p,D}$$
 - Matrix Langevin  $(\mathcal{ML})$  prior

$$W \sim \mathcal{ML}(W; F), W \in \mathcal{V}_{p,D}$$
 - Matrix Langevin  $(\mathcal{ML})$  prior

•  $\mathcal{ML}-$ distribution [3, 8] with respect to Haar measure  $\mu$  on  $\mathcal{V}_{p,D}$ :

$$\pi_{\mathcal{ML}}(W;F) = \frac{1}{c(F)} \exp(\operatorname{tr}(F^T W)), \quad c(F) = {}_{0}\mathcal{F}_{1}\left(\frac{d}{2}, \frac{F^T F}{4}\right)$$

$$W \sim \mathcal{ML}(W;F), W \in \mathcal{V}_{p,D}$$
 - Matrix Langevin  $(\mathcal{ML})$  prior

ullet  $\mathcal{ML}-$ distribution [3, 8] with respect to Haar measure  $\mu$  on  $\mathcal{V}_{p,D}$ :

$$\pi_{\mathcal{ML}}(W;F) = \frac{1}{c(F)} \exp(\operatorname{tr}(F^T W)), \quad c(F) = \, _0\mathcal{F}_1\left(\frac{d}{2}, \frac{F^T F}{4}\right)$$

•  $_{0}\mathcal{F}_{1}\left(\frac{d}{2},\frac{F^{T}F}{4}\right)$  is hypergeometric function of order  $\frac{d}{2}$  with matrix  $F^{T}F/4$  [2, 3, 10].

$$W \sim \mathcal{ML}(W; F), W \in \mathcal{V}_{p,D}$$
 - Matrix Langevin  $(\mathcal{ML})$  prior

•  $\mathcal{ML}-$ distribution [3, 8] with respect to Haar measure  $\mu$  on  $\mathcal{V}_{p,D}$ :

$$\pi_{\mathcal{ML}}(W;F) = \frac{1}{c(F)} \exp(\operatorname{tr}(F^T W)), \quad c(F) = {}_{0}\mathcal{F}_{1}\left(\frac{d}{2}, \frac{F^T F}{4}\right)$$

•  $_{0}\mathcal{F}_{1}\left(\frac{d}{2},\frac{F^{T}F}{4}\right)$  is hypergeometric function of order  $\frac{d}{2}$  with matrix  $F^{T}F/4$  [2, 3, 10].

Parameterization of F via SVD: (1.5.8) in [3]

$$F = M\Lambda V^T, \quad \Lambda = \mathsf{diag}(\{\lambda_1, \cdots, \lambda_D\})$$

- $V \in \mathcal{V}_{D,D} = \mathcal{O}(D)$  is space of orthogonal matrices of dimension  $D \times D$
- $M \in \tilde{\mathcal{V}}_{p,D} = \{W \in \mathcal{V}_{p,D} : W_{1,j} \ge 0, \forall j = 1, 2, \cdots, D\}$
- $\lambda = (\lambda_1, \dots, \lambda_D) \in \mathcal{S}_D = \{\lambda \in \mathcal{R}^D_+ : \infty > \lambda_1 > \dots > \lambda_D > 0\}$

- $V \in \mathcal{V}_{D,D} = \mathcal{O}(D)$  is space of orthogonal matrices of dimension  $D \times D$
- $M \in \tilde{\mathcal{V}}_{p,D} = \{W \in \mathcal{V}_{p,D} : W_{1,j} \ge 0, \forall j = 1, 2, \cdots, D\}$
- $\lambda = (\lambda_1, \dots, \lambda_D) \in \mathcal{S}_D = \{\lambda \in \mathcal{R}^D_+ : \infty > \lambda_1 > \dots > \lambda_D > 0\}$

$$\pi_{\mathcal{ML}}(W; (V, M, \lambda)) := \frac{1}{c(\Lambda)} exp(tr(V\Lambda M^T W)) \mathcal{I}(W \in \mathcal{V}_{p,D})$$
$$c(\Lambda) = {}_{0}\mathcal{F}_{1}(\frac{d}{2}, \frac{\Lambda^2}{4}), V \in \mathcal{V}_{D,D}, M \in \tilde{\mathcal{V}}_{p,D}, \lambda \in \mathcal{S}_{D}$$

- $V \in \mathcal{V}_{D,D} = \mathcal{O}(D)$  is space of orthogonal matrices of dimension  $D \times D$
- $M \in \tilde{\mathcal{V}}_{p,D} = \{W \in \mathcal{V}_{p,D} : W_{1,j} \ge 0, \forall j = 1, 2, \cdots, D\}$
- $\lambda = (\lambda_1, \dots, \lambda_D) \in \mathcal{S}_D = \{\lambda \in \mathcal{R}_+^D : \infty > \lambda_1 > \dots > \lambda_D > 0\}$

$$\pi_{\mathcal{ML}}(W; (V, M, \lambda)) := \frac{1}{c(\Lambda)} exp(tr(V\Lambda M^T W)) \mathcal{I}(W \in \mathcal{V}_{p,D})$$
$$c(\Lambda) = {}_{0}\mathcal{F}_{1}(\frac{d}{2}, \frac{\Lambda^2}{4}), V \in \mathcal{V}_{D,D}, M \in \tilde{\mathcal{V}}_{p,D}, \lambda \in \mathcal{S}_{D}$$

### Prior for M, V and $\lambda$

$$M \sim \mathcal{ML}(F_M), \quad V \sim \mathcal{ML}(F_V)$$

$$\lambda_k \sim^{i.i.d} \Gamma(b_1, b_2), \forall k = 1, \dots, D$$

• Variance scale parameter  $(\tau^2)$ :

$$au^2 \sim \mathsf{IG}(lpha_1, lpha_2)$$

• Variance scale parameter  $(\tau^2)$ :

$$au^2 \sim \mathsf{IG}(\alpha_1, \alpha_2)$$

ullet Nugget (g) and covariance parameters heta

$$\{g,\theta\} \sim^{iid} \Gamma(3/2,b_{[.]})$$

• Variance scale parameter  $(\tau^2)$ :

$$\tau^2 \sim \mathsf{IG}(\alpha_1, \alpha_2)$$

• Nugget (g) and covariance parameters  $\theta$ 

$$\{g,\theta\} \sim^{iid} \Gamma(3/2,b_{[.]})$$

- $b_{[\theta_y]} > b_{[\theta_Q]} > b_{[\theta_x]}$ : Controls smoothness hierarchy
  - Output layer smoother than latent, which is smoother than input.
  - encoding a prior belief that as layers get deeper they should be less "wiggly"

• Variance scale parameter  $(\tau^2)$ :

$$\tau^2 \sim \mathsf{IG}(\alpha_1, \alpha_2)$$

• Nugget (g) and covariance parameters  $\theta$ 

$$\{g,\theta\} \sim^{iid} \Gamma(3/2,b_{[.]})$$

- $b_{[\theta_y]} > b_{[\theta_Q]} > b_{[\theta_x]}$ : Controls smoothness hierarchy
  - Output layer smoother than latent, which is smoother than input.
  - encoding a prior belief that as layers get deeper they should be less "wiggly"

### **Latent Layers:**

All latent layers follow a zero-mean Multivariate Normal (MVN) prior.

### Posterior Inference Summary

• Perform fully Bayesian inference for DGP models via MCMC.

### Posterior Inference Summary

- Perform fully Bayesian inference for DGP models via MCMC.
- ullet Posterior inference for W, Q and  $\lambda$  is intractable.

- Perform fully Bayesian inference for DGP models via MCMC.
- Posterior inference for W, Q and  $\lambda$  is intractable.
- Hybrid MCMC framework prioritizing UQ:

- Perform fully Bayesian inference for DGP models via MCMC.
- Posterior inference for W, Q and  $\lambda$  is intractable.
- Hybrid MCMC framework prioritizing UQ:
  - Metropolis-Hastings (MH) for  $\{g_x, \theta_x, \theta_Q, g, \theta_y\}$  [7].

- Perform fully Bayesian inference for DGP models via MCMC.
- Posterior inference for W, Q and  $\lambda$  is intractable.
- Hybrid MCMC framework prioritizing UQ:
  - Metropolis-Hastings (MH) for  $\{g_x, \theta_x, \theta_Q, g, \theta_y\}$  [7].
  - Hamiltonian Monte Carlo (HMC) for W [15, 16]

- Perform fully Bayesian inference for DGP models via MCMC.
- Posterior inference for W, Q and  $\lambda$  is intractable.
- Hybrid MCMC framework prioritizing UQ:
  - Metropolis-Hastings (MH) for  $\{g_x, \theta_x, \theta_Q, g, \theta_y\}$  [7].
  - ullet Hamiltonian Monte Carlo (HMC) for W [15, 16]
  - Elliptical Slice Sampling (ESS) for  $Q_1, \dots, Q_D$  and  $\lambda$  requires no tuning as recently employed in [12].

Data Generation: Employed in [14]

Data Generation: Employed in [14]

• Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I})$ ; d = 10.

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

Scenario 1: 2D Input subspace

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

#### Scenario 1: 2D Input subspace

$$\mathbf{W} = \begin{pmatrix} 0.008 - 0.184 \ 0.343 - 0.053 \ 0.081 \ 0.066 - 0.412 \ 0.654 \ 0.485 \ 0.040 \\ 0.067 - 0.415 \ 0.482 \ 0.076 \ 0.210 \ 0.538 \ 0.078 \ -0.200 \ -0.291 \ 0.348 \end{pmatrix}^T$$

$$\mathbf{a}_0 = -0.06976, \quad \mathbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^T, \quad \mathbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix}$$

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

#### Scenario 1: 2D Input subspace

$$\mathbf{W} = \begin{pmatrix} 0.008 - 0.184 & 0.343 - 0.053 & 0.081 & 0.066 - 0.412 & 0.654 & 0.485 & 0.040 \\ 0.067 - 0.415 & 0.482 & 0.076 & 0.210 & 0.538 & 0.078 & -0.200 & -0.291 & 0.348 \end{pmatrix}^{T}$$

$$\mathbf{a}_{0} = -0.06976, \quad \mathbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^{T}, \quad \mathbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix}$$

#### **Experimental Setup:**

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

#### Scenario 1: 2D Input subspace

$$\mathbf{W} = \begin{pmatrix} 0.008 - 0.184 \ 0.343 - 0.053 \ 0.081 \ 0.066 - 0.412 \ 0.654 \ 0.485 \ 0.040 \\ 0.067 - 0.415 \ 0.482 \ 0.076 \ 0.210 \ 0.538 \ 0.078 \ -0.200 \ -0.291 \ 0.348 \end{pmatrix}^{T}$$

$$\mathbf{a}_{0} = -0.06976, \quad \mathbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^{T}, \quad \mathbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix}$$

#### Experimental Setup:

• n = 600 samples; training set is 80%, test set 20%.

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I}); d = 10.$
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$ ,  $\phi = \mathbf{W}^\top \mathbf{x}$ ,  $\epsilon \sim \mathcal{N}(0, 0.01)$ .

#### Scenario 1: 2D Input subspace

$$\mathbf{W} = \begin{pmatrix} 0.008 - 0.184 & 0.343 - 0.053 & 0.081 & 0.066 - 0.412 & 0.654 & 0.485 & 0.040 \\ 0.067 - 0.415 & 0.482 & 0.076 & 0.210 & 0.538 & 0.078 & -0.200 & -0.291 & 0.348 \end{pmatrix}^{T}$$

$$\mathbf{a}_{0} = -0.06976, \quad \mathbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^{T}, \quad \mathbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix}$$

#### **Experimental Setup:**

- n = 600 samples; training set is 80%, test set 20%.
- Baseline Methods:Active Subspace (AS), gradient kernel dimension reduction (gKDR), Gaussian process maximum likelihood estimate (GP-MLE)

#### Data Generation: Employed in [14]

- Inputs  $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I})$ ; d = 10.
- Output:  $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon, \ \phi = \mathbf{W}^\top \mathbf{x}, \ \epsilon \sim \mathcal{N}(0, 0.01).$

#### Scenario 1: 2D Input subspace

$$\mathbf{W} = \begin{pmatrix} 0.008 - 0.184 \ 0.343 - 0.053 \ 0.081 \ 0.066 - 0.412 \ 0.654 \ 0.485 \ 0.040 \\ 0.067 - 0.415 \ 0.482 \ 0.076 \ 0.210 \ 0.538 \ 0.078 \ -0.200 \ -0.291 \ 0.348 \end{pmatrix}^T$$

$$\mathbf{a}_0 = -0.06976, \quad \mathbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^T, \quad \mathbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix}$$

#### **Experimental Setup:**

- n = 600 samples; training set is 80%, test set 20%.
- Baseline Methods:Active Subspace (AS), gradient kernel dimension reduction (gKDR), Gaussian process maximum likelihood estimate (GP-MLE)
- Performance metrics: root mean square prediction error (RMSPE), Nash-Sutcliffe model efficiency coefficient (NSME), Continuous Ranked Probability Score (CRPS), Score, Bayesian Information Criterion (BIC) and mean log pointwise predicted density (MLPPD).

- Baseline methods:
  - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients  $\nabla_x f(x)$  [4]. Requires direct gradient access, making it impractical for black-box simulators.

- Baseline methods:
  - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients  $\nabla_x f(x)$  [4]. Requires direct gradient access, making it impractical for black-box simulators.
  - **gKDR:** Builds on the sufficient DR framework using gradients of the *input kernel*, not the simulator [5].

- Baseline methods:
  - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients  $\nabla_x f(x)$  [4]. Requires direct gradient access, making it impractical for black-box simulators.
  - gKDR: Builds on the sufficient DR framework using gradients of the input kernel, not the simulator [5].
  - **GP-MLE:** Employs MLE to estimate W and the covariance hyperparameters [14].

- Baseline methods:
  - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients  $\nabla_x f(x)$  [4]. Requires direct gradient access, making it impractical for black-box simulators.
  - gKDR: Builds on the sufficient DR framework using gradients of the input kernel, not the simulator [5].
  - **GP-MLE:** Employs MLE to estimate W and the covariance hyperparameters [14].
- DGP  $\bf A$  layer ( $\bf D$ ) denotes DGP with  $\bf A$  layer(s) and input subspace  $\bf D$  where  $\bf A, \bf D=1,2,3$ .

- Baseline methods:
  - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients  $\nabla_x f(x)$  [4]. Requires direct gradient access, making it impractical for black-box simulators.
  - **gKDR:** Builds on the sufficient DR framework using gradients of the *input kernel*, not the simulator [5].
  - **GP-MLE:** Employs MLE to estimate W and the covariance hyperparameters [14].
- DGP  $\bf A$  layer ( $\bf D$ ) denotes DGP with  $\bf A$  layer(s) and input subspace  $\bf D$  where  $\bf A, \bf D=1,2,3$ .
- DGP  ${\bf A}$  layer ( ${\bf D}$ ) W/o represents DGP with  ${\bf A}$  layer(s) and input subspace  ${\bf D}$  without DR.
- DGP A layer (D) Truth represents DGP with A layer(s) and input subspace D with DR but uses the true W.

| Method (D)            | RMSPE  | NSME   | CRPS   | Score     | BIC    |
|-----------------------|--------|--------|--------|-----------|--------|
| AS (2)                | 0.2596 | 0.9717 | 0.7833 | -232.3104 | 245.53 |
| gKDR (2)              | 0.1849 | 0.9907 | 0.5637 | 281.7241  | 240.30 |
| GP-MLE (2)            | 0.0946 | 0.9976 | 0.5347 | 449.8206  | 246.11 |
| DGP 1-layer (1)       | 0.1055 | 0.9945 | 0.1023 | 260.5579  | 248.01 |
| DGP 1-layer (2)       | 0.0815 | 0.9982 | 0.0162 | 715.9930  | 249.20 |
| DGP 1-layer (3)       | 0.1272 | 0.9940 | 0.2499 | 712.2032  | 247.52 |
| DGP 2-layer (1)       | 0.1437 | 0.9929 | 0.1046 | 643.7125  | 247.00 |
| DGP 2-layer (2)       | 0.1100 | 0.9972 | 0.1442 | 266.6124  | 248.33 |
| DGP 2-layer (3)       | 0.1592 | 0.9949 | 0.5855 | 540.6212  | 246.07 |
| DGP 3-layer (1)       | 0.1937 | 0.9873 | 0.9335 | 206.9284  | 244.02 |
| DGP 3-layer (2)       | 0.1821 | 0.9902 | 0.9890 | 146.8134  | 245.06 |
| DGP 3-layer (3)       | 0.1941 | 0.9850 | 0.5073 | 694.1730  | 243.90 |
| DGP 1-layer (10) W/o  | 0.2194 | 0.9821 | 0.2376 | 220.6803  | 240.00 |
| DGP 2-layer (10) W/o  | 0.2175 | 0.9856 | 0.7510 | 317.6212  | 243.45 |
| DGP 3-layer (10) W/o  | 0.2070 | 0.9702 | 0.6450 | 104.6729  | 243.98 |
| DGP 1-layer (2) Truth | 0.0706 | 0.9993 | 0.0118 | 324.2333  | 250.08 |
| DGP 2-layer (2) Truth | 0.0981 | 0.9941 | 0.1496 | 317.5155  | 246.59 |
| DGP 3-layer (2) Truth | 0.1629 | 0.9945 | 0.2646 | 331.7272  | 247.00 |

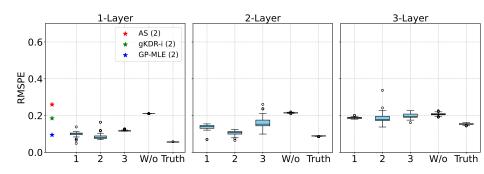


Figure: RMSPE comparisons across different method for train size 480

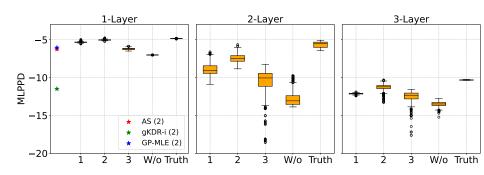


Figure: MLPPD comparisons across different method for train size 480

### 2D Input Subspace: Employed in [12]

 $\bullet$  Inputs  $x \in [0,1]^{10}$  from Latin Hyperpercube Sample

- ullet Inputs  $x \in [0,1]^{10}$  from Latin Hyperpercube Sample
- Projected by known  $10 \times 2$  matrix W.

- ullet Inputs  $x \in [0,1]^{10}$  from Latin Hyperpercube Sample
- Projected by known  $10 \times 2$  matrix W.
- $z = (z_1, z_2) = W^{\top} x$  with response function given as

- ullet Inputs  $x \in [0,1]^{10}$  from Latin Hyperpercube Sample
- Projected by known  $10 \times 2$  matrix W.
- ullet  $z=(z_1,z_2)=W^{ op}x$  with response function given as

$$f(z) = 10z_1 \exp(-z_1^2 - z_2^2); z_j = (z_j - 0.5) \cdot 6 + 1, j = 1, 2.$$

### 2D Input Subspace: Employed in [12]

- ullet Inputs  $x \in [0,1]^{10}$  from Latin Hyperpercube Sample
- Projected by known  $10 \times 2$  matrix W.
- ullet  $z=(z_1,z_2)=W^{ op}x$  with response function given as

$$f(z) = 10z_1 \exp(-z_1^2 - z_2^2); z_j = (z_j - 0.5) \cdot 6 + 1, j = 1, 2.$$

• W is the same as numerical experiment 1

- ullet Inputs  $x\in[0,1]^{10}$  from Latin Hyperpercube Sample
- Projected by known  $10 \times 2$  matrix W.
- ullet  $z=(z_1,z_2)=W^{ op}x$  with response function given as

$$f(z) = 10z_1 \exp(-z_1^2 - z_2^2); z_j = (z_j - 0.5) \cdot 6 + 1, j = 1, 2.$$

- W is the same as numerical experiment 1
- n = 300 samples; training set is 80%, test set 20%.

| Method (D)            | RMSPE  | NSME   | CRPS   | Score    | BIC    |
|-----------------------|--------|--------|--------|----------|--------|
| AS (2)                | 0.6190 | 0.8329 | 0.5420 | 90.2640  | 601.39 |
| gKDR (2)              | 0.7791 | 0.7562 | 0.6429 | 88.7980  | 596.24 |
| GP-MLE (2)            | 0.6052 | 0.8400 | 0.5113 | 91.0290  | 604.08 |
| DGP 1-layer (1)       | 0.4795 | 0.9035 | 0.5938 | 104.6915 | 615.28 |
| DGP 1-layer (2)       | 0.5302 | 0.8873 | 0.4549 | 63.3460  | 612.07 |
| DGP 1-layer (3)       | 0.5948 | 0.7691 | 0.5863 | 72.6261  | 608.65 |
| DGP 2-layer (1)       | 0.4778 | 0.9079 | 0.4097 | 126.6638 | 616.90 |
| DGP 2-layer (2)       | 0.4217 | 0.9192 | 0.4490 | 100.6576 | 618.34 |
| DGP 2-layer (3)       | 0.5616 | 0.7897 | 0.5677 | 73.6139  | 610.71 |
| DGP 3-layer (1)       | 0.4823 | 0.8937 | 0.3705 | 87.8325  | 616.10 |
| DGP 3-layer (2)       | 0.4045 | 0.9240 | 0.4178 | 128.5832 | 619.20 |
| DGP 3-layer (3)       | 0.5221 | 0.8895 | 0.5377 | 104.7551 | 615.37 |
| DGP 1-layer (10) W/o  | 0.6761 | 0.7635 | 0.7710 | 80.3565  | 600.03 |
| DGP 2-layer (10) W/o  | 0.6028 | 0.8459 | 0.6382 | 54.3635  | 603.22 |
| DGP 3-layer (10) W/o  | 0.6339 | 0.8096 | 0.6329 | 69.3009  | 601.48 |
| DGP 1-layer (2) Truth | 0.4344 | 0.9150 | 0.4994 | 53.8692  | 617.46 |
| DGP 2-layer (2) Truth | 0.4917 | 0.8929 | 0.5207 | 90.0178  | 616.95 |
| DGP 3-layer (2) Truth | 0.3215 | 0.9371 | 0.5308 | 113.6072 | 620.88 |

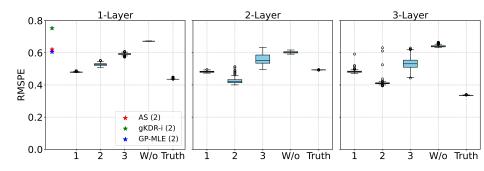


Figure: RMSPE comparisons across different method for train size 240

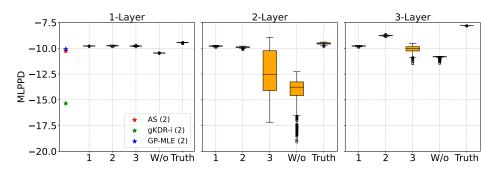


Figure: MLPPD comparisons across different method for train size 240

#### Discussion and Conclusion

#### **Simulation Results:**

- Models with built-in DR consistently outperformed models W/o.
- DGPs with appropriate layer depth adapted well, regardless of the complexity.
- Very deep models (3 layers) sometimes showed diminishing returns or overfitting in low-complexity settings.
- Performance gains from added depth were more apparent when the response surface was complex.

#### Discussion and Conclusion

#### Simulation Results:

- Models with built-in DR consistently outperformed models W/o.
- DGPs with appropriate layer depth adapted well, regardless of the complexity.
- Very deep models (3 layers) sometimes showed diminishing returns or overfitting in low-complexity settings.
- Performance gains from added depth were more apparent when the response surface was complex.

#### **Conclusion:**

- Model selection is key since data complexity is not known beforehand.
- ullet Start with a moderate number of DGP layers and D, tune for the data at hand.
- Fully Bayesian DGPs with dimension reduction provide flexible modeling and robust performance across a range of complexities.

# Thank you

#### References I

- [1] Mohamed Amine Bouhlel et al. "An Improved Approach for Estimating the Hyperparameters of the Kriging Model for High-Dimensional Problems through the Partial Least Squares Method". In: Mathematical Problems in Engineering 2016 (2016), pp. 1–11. URL: https://api.semanticscholar.org/CorpusID:55011497.
- [2] Ronald W. Butler and Andrew T.A. Wood. "Laplace approximation for Bessel functions of matrix argument". In: Journal of Computational and Applied Mathematics 155.2 (2003), pp. 359-382. ISSN: 0377-0427. DOI: https://doi.org/10.1016/S0377-0427(02)00874-9. URL: https://www.sciencedirect.com/science/article/pii/S0377042702008749.
- [3] Yasuko Chikuse. "Concentrated matrix Langevin distributions". In: Journal of Multivariate Analysis 85.2 (2003), pp. 375–394. ISSN: 0047-259X. DOI: https://doi.org/10.1016/0047-259X(02)00065-9. URL: https://www.sciencedirect.com/science/article/pii/80047259X02000659.
- [4] Paul G. Constantine, Eric Dow, and Qiqi Wang. "Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces". In: SIAM Journal on Scientific Computing 36.4 (2014), A1500–A1524. DOI: 10.1137/130916138. eprint: https://doi.org/10.1137/130916138. URL: https://doi.org/10.1137/130916138.
- [5] Kenji Fukumizu and Chenlei Leng. Gradient-based kernel dimension reduction for supervised learning. 2011. arXiv: 1109.0455 [stat.ML]. URL: https://arxiv.org/abs/1109.0455.
- [6] Raphael Gautier et al. A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes. 2022. DOI: 10.1615/Int.J.UncertaintyQuantification.2021035621. arXiv: 2008.03534 [stat.ML]. URL: https://arxiv.org/abs/2008.03534.
- [7] Robert B Gramacy and Herbert K. H Lee. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling". In: Journal of the American Statistical Association 103.483 (2008), pp. 1119–1130. DOI: 10.1198/016214508000000689. eprint: https://doi.org/10.1198/016214508000000689. URL: https://doi.org/10.1198/016214508000000689.

#### References II

- [8] Peter D. Hoff. "Simulation of the Matrix Bingham-von Mises-Fisher Distribution, With Applications to Multivariate and Relational Data". In: Journal of Computational and Graphical Statistics 18.2 (2009), pp. 438–456. DOI: 10.1198/jcgs.2009.07177. eprint: https://doi.org/10.1198/jcgs.2009.07177. URL: https://doi.org/10.1198/jcgs.2009.07177.
- [9] Dimitrios Kapsoulis et al. "The use of Kernel PCA in evolutionary optimization for computationally demanding engineering applications". In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), pp. 1-8. URL: https://api.semanticscholar.org/CorpusID:14548071.
- [10] Plamen Koev and Alan Edelman. The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument. 2005. arXiv: math/0505344 [math.PR]. URL: https://arxiv.org/abs/math/0505344.
- [11] Xiaoyu Liu and Serge Guillas. "Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights". In: SIAM/ASA Journal on Uncertainty Quantification 5.1 (2017), pp. 787–812. DOI: 10.1137/16M1090648. eprint: https://doi.org/10.1137/16M1090648. URL: https://doi.org/10.1137/16M1090648.
- [12] Annie Sauer, Robert B. Gramacy, and David Higdon. "Active Learning for Deep Gaussian Process Surrogates". In: Technometrics 65.1 (2023), pp. 4–18. URL: https://doi.org/10.1080/00401706.2021.2008505.
- [13] Jun Tao et al. "Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization". In: Chinese Journal of Aeronautics (2020). URL: https://api.semanticscholar.org/CorpusID:216240132.
- [14] Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation". In: Journal of Computational Physics 321 (2016), pp. 191–223. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2016.05.039. URL: https://www.sciencedirect.com/science/article/pii/S002199911630184X.

#### References III

- [15] P. Tsilifis and R. G. Ghanem. "Bayesian adaptation of chaos representations using variational inference and sampling on geodesics". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2217 (2018), p. 20180285. DOI: 10.1098/rspa.2018.0285. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2018.0285. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2018.0285.
- [16] Panagiotis Tsilifis et al. "Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes". In:

  Computer Methods in Applied Mechanics and Engineering 386 (2021), p. 114147. ISSN: 0045-7825. DOI:

  https://doi.org/10.1016/j.cma.2021.114147. URL:

  https://www.sciencedirect.com/science/article/pii/S0045782521004783.
- [17] Tong Zhou and Yong-bo Peng. "Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis". In: Computers & Structures (2020). URL: https://api.semanticscholar.org/CorpusID:224947503.

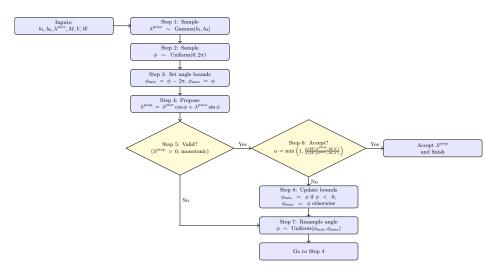


Figure: Elliptical slice sampling procedure for the concentration parameter  $(\lambda)$ 

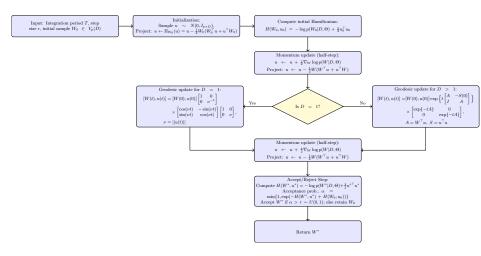


Figure: Geodesic Monte Carlo Sampling procedure on the Stiefel Manifold  $(V_{p,D})$ 

#### Algorithm 1: Geodesic Monte Carlo Algorithm on the Stiefel Manifold

**Input:** Integration period T, step size  $\epsilon$ , initial sample  $W_0 \in V_n(D)$ 

Output: Sample  $W^*$  from the posterior  $p(W|D,\Theta)$ 

Initialization:

Sample  $u \sim N(0, I_{p \times D})$  and project onto the tangent space:

$$u \leftarrow \Pi_{W_0}(u) = u - \frac{1}{2}W_0(W_0^\top u + u^\top W_0)$$

Compute initial Hamiltonian:

$$H(W_0, u_0) = -\log p(W_0|D, \Theta) + \frac{1}{2}u_0^\top u_0$$

For m = 1, ..., T:

Momentum Update (Half-Step):

$$u \leftarrow u + \frac{\epsilon}{2} \nabla_W \log p(W|D,\Theta), \qquad u \leftarrow \Pi_W(u) = u - \frac{1}{2} W\big(W^\top u + u^\top W\big)$$

#### Position and Momentum Update (Geodesic Flow):

If D=1 (Hypersphere):

$$[W(t),u(t)] = [W(0),u(0)] \begin{bmatrix} 1 & 0 \\ 0 & \nu^{-1} \end{bmatrix} \begin{bmatrix} \cos(\nu t) & -\sin(\nu t) \\ \sin(\nu t) & \cos(\nu t) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \nu \end{bmatrix}$$

where  $\nu = ||u(0)||$ Else (D > 1):

$$[W(t),u(t)] = [W(0),u(0)] \exp \left\{ t \begin{bmatrix} A & -S(0) \\ I & A \end{bmatrix} \right\} \begin{bmatrix} \exp(-tA) & 0 \\ 0 & \exp(-tA) \end{bmatrix}$$

where  $t = \epsilon$ ;  $A = W^Tu$ ;  $S = u^Tu$ ; I identity.

Momentum Update (Half-Step):

$$u \leftarrow u + \frac{\epsilon}{2} \nabla_W \log p(W|D,\Theta), \qquad u \leftarrow \Pi_W(u) = u - \frac{1}{2} W\big(W^\top u + u^\top W\big)$$

#### Accept/Reject Step:

Compute 
$$H(W^*, u^*) = -\log p(W^*|D, \Theta) + \frac{1}{5}u^{*\top}u^*$$

$$\alpha = \min \{1, \exp(-H(W^*, u^*) + H(W_0, u_0))\}$$

Accept  $W^*$  with probability  $\alpha$  if  $\alpha > r \sim \mathrm{Uniform}(0,1)$ ; otherwise, retain  $W_0$