STAT 8025

Lecture 7: Non-Gaussian Spatial Data

Dr. Emily Lei Kang

Division of Statistics & Data Science Department of Mathematical Sciences University of Cincinnati

Copyright ©2023 Emily L. Kang

Introduction

- ▶ We can generalize our models to handle non-Gaussian data
 - Spatial binary data: Y(s) = 1 if site s is disease and Y(s) = 0 otherwise
 - ▶ Spatial count data: $Y(s) \in \{0, 1, 2, \dots\}$ is the number of days at site s with extreme temperature
- ► The multivariate normal distribution or GP is convenient, but this doesn't provide a good model for such non-Gaussian data (at least not directly)
- ▶ What models do you know for non-Gaussian data?

Generalized Linear Model

▶ For some link function $g(\cdot)$, we have

$$\eta_i = g(E(Y_i)) = X_i'\beta$$

- For binary data and logistic regression we have $g(r) = log \frac{r}{1-r}$
- For count data and Poisson regression we have g(r) = log(r)
- Estimation is done via iterative reweighted least squares (IRWLS)
 - Consider the effective response $z \equiv \eta(x) + (Y r(x)g'(r(x)))$
 - Consider var(z) and then perform weighted least squares (iteratively)

How to do this with spatial data?

- Peter Diggle: Spatial dependence is often induced by adding Gaussian random effects to a generalized linear model.
- Let's think about the Gaussian case:
 - We assume

$$Y(s) = X(s)'\beta + w(s) + \epsilon(s)$$

where $w(\cdot)$ is a GP with mean zero and covariance function $C(\cdot,\cdot)$; $\epsilon(\cdot)$ is iid Gaussian white noise with variance τ^2

One way to write the model is:

$$Y(s)|w(s) \stackrel{ind}{\sim} N(X(s)'\beta + w(s), \tau^2)$$

 $w(\cdot) \sim \mathcal{GP}(0, C(\cdot, \cdot))$

- \blacktriangleright Conditioning on $w(\cdot)$, $Y(\cdot)$ becomes spatially independent.
- Marginally, (integrating out the random effects $w(\cdot)$), $Y(\cdot)$ is a GP with mean $\mu(s) = X(s)'\beta$ and covariance function $C(\cdot, \cdot) + \tau^2 1(s = t)$.

Spatial GLM

We assume

$$w(\cdot) \sim \mathcal{GP}$$

with mean zero and covariance function $C(\cdot, \cdot)$.

▶ Given $w(\cdot)$, Y(s) are independent with

$$g(E(Y(s))) = X(s)'\beta + w(s)$$

- Marginalizing over the random effects $w(\cdot)$, we will have spatially dependent Y(s)'s.
- ▶ However, it is often hard to get the closed-form expression for the marginal distribution of $Y(\cdot)$.

Spatial GLM for binary data

Given w(s),

$$Y(s) \stackrel{indep.}{\sim} Bern(p(s))$$

$$logit(p(s)) = X(s)'\beta + w(s)$$

Spatial GLM for count data

Given w(s),

$$Y(s) \stackrel{indep.}{\sim} Pois(\lambda(s))$$

$$log(\lambda(s)) = X(s)'\beta + w(s)$$

Marginal distribution of Y(s) for the Poisson case:

- ▶ Integration will be complicated... I cannot solve it.
- Let's consider the first two moments.
 - Mean

$$E(Y(s)) = E(E(Y(s)|w(s)))$$

$$= E(exp(X(s)'\beta + w(s)))$$

$$= e^{X(s)'\beta}E(e^{w(s)})$$

$$= e^{X(s)'\beta+\sigma^2/2}$$

Variance

$$Var(Y(s)) = VE(Y(s)|w(s)) + EV(Y(s)|w(s)) = V(e^{X(s)'\beta+w(s)}) + E(e^{X(s)'\beta+w(s)}) = V(e^{X(s)'\beta+w(s)}) + e^{X(s)'\beta+\sigma^2/2}$$

Overdispersion

ightharpoonup Cov(Y(s), Y(u)) will be more complicated...

How to fit the model

- ► MLE?
 - ► Try the likelihood
 - ► I cannot solve it... approximation/computing?
- Bayesian inference
 - Straightforward but MCMC is needed and parameters including β may need to be updated with MH
 - A special case is the probit regression model for binary data

► Non-spatial probit regression:

$$Prob(Y_i = 1) = \Phi(X_i\beta)$$

where $\Phi(\cdot)$ is the CDF of standard normal.

 \triangleright Introducing the latent variable Z_i such that

$$Y_i=I(Z_i>0)$$

$$Z_i \sim N(X_i'\beta, 1)$$

- Why should we set $\sigma^2 \equiv var(Z_i)$ to be 1? Identifiability! We would not be able to separate β and σ
- ▶ MCMC imputes Z_i in each iteration. Conditioning on Z_i 's, it is equivalent to our classical regression with Gaussian assumption.
- Spatial version?

We set

$$Z(s) = X(s)'\beta + \sqrt{r}w(s) + \sqrt{(1-r)}\epsilon(s)$$

- \blacktriangleright w(s) is GP with mean zero and variance 1 and (say) Matérn covariance function
- $ightharpoonup \epsilon(s)$ iid N(0,1)
- Most parameters are conjugate, but we need MH for covariance parameters.
- ▶ Not everyone includes nugget in the model.

Summary

► Non-Gaussian spatial data

Preview:

► Nonstationary models

