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Response Surface: What is it?

» Response surface methodology (RSM) is a collection of
statistical and mathematical tools useful for developing,
improving, and optimizing processes.

» Applications historically come from industry and
manufacturing, focused on design, development, and
formulation of new products and the improvement of
existing products but also from (national) laboratory
research, and with obvious military application.

» The overarching theme is a study of how input variables
controlling a product or process potentially influence a
response measuring performance or quality characteristics.
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Response surface

Consider a response Y that depends on controllable input
variables &1, &2, ..., &mn. Write

>
>

Y:f(§17§27"'7€m)+6

f(§1’§27‘ . 7§m) = E(Y) =n

where € is treated as zero mean idiosyncratic noise possibly
representing inherent variation, or the effect of other
systems or variables not under our purview at this time.

A simplifying assumption that e ~ N(0,02) is typical.

We seek estimates for f and o2 from noisy observations Y
at inputs &.
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Response surface

» Inputs &1, &9,. .., &, above are called natural variables
because they’re expressed in their natural units of
measurement, such as degrees Celsius (C), pounds per
square inch (psi), etc.

» We usually transform these to coded variables
T1,T9,..., T, to mitigate hassles and confusion that can
arise when working with a multitude of scales of
measurement.

» Transformations offering dimensionless inputs
T1,T9,..., T, in the unit cube, or scaled to have a mean of
zero and standard deviation of one, are common choices.
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Simple Function

Consider the relationship between the response variable yield
(y) in a chemical process and two process variables: reaction
time (&) and reaction temperature (£2). R code below
synthesizes this setting for the benefit of illustration.

yield <- function(xil, xi2)
{
xil <- 3*xil - 15
xi2 <- xi2/50 - 13
xil <- co0s(0.5)*xil - sin(0.5)*xi2
xi2 <- sin(0.5)*xil + cos(0.5)*xi2
y <- exp(-xi1"2/80 - 0.5%(xi2 + 0.03*xil1"2 - 40%0.03)"2)
return(100*y)
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Visualization

xil <- seq(1, 8, length=100)

xi2 <- seq(100, 1000, length=100)

g <- expand.grid(xil, xi2)

y <- yield(gl,11, g[,21)

persp(xil, xi2, matrix(y, ncol=length(xi2)), theta=45, phi=45,
1lwd=0.5, xlab="xil : time", ylab="xi2 : temperature",
zlab="yield", expand=0.4)

cols <- heat.colors(128)
image(xil, xi2, matrix(y, ncol=length(xi2)), col=cols,
xlab="xil : time", ylab="xi2 : temperature")
contour(xil, xi2, matrix(y, ncol=length(xi2)), nlevels=4, add=TRUE)
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Low Order Polynomial

>

| 2

Learning about f is lots easier if we make some simplifying
approximations.

Appealing to Taylor’s theorem, a low-order polynomial in a
small, localized region of the input (z) space is one way
forward. Classical RSM focuses on disciplined application
of local analysis and sequential refinement of “locality”
through conservative extrapolation. It’s an inherently
hands-on process.
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First Order Polynomial

A first-order model, or sometimes called a main effects model,
makes sense in parts of the input space where it’s believed that
there’s little curvature in f.

n = Po + Bix1 + Poxo

Let assume we know this function. In practice, such a surface
would be obtained by fitting a model to the outcome of a
designed experiment.

# Define a function
first.order <- function(x1l, x2)
{ 50 + 8*x1 + 3*x2 }
#### Simulate data into a grid
x1 <- x2 <- seq(-1, 1, length=100)
g <- expand.grid(xl, x2)
etal <- matrix(first.order(gl,1], g[,2]), ncol=length(x2))
### Visualization
par (mfrow=c(1,2))
persp(xl, x2, etal, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, etal, col=heat.colors(128))
contour(xl, x2, matrix(etal, ncol=length(x2)), add=TRUE)
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First Order Polynomial

A first-order model with interactions induces a limited degree of
curvature via different rates of change of y as x; is varied for
fixed x2, and vice versa.

1 = Bo + Brx1 + B2x2 + Braw172

# Define a function
first.order.i <- function(xl, x2)
{50 + 8*x1 + 3*x2 - 4*xx1*x2}
#### Simulate data into a grid
etali <- matrix(first.order.i(gl,1], g[,2]), ncol=length(x2))
### Visualization
par (mfrow=c(1,2))
persp(x1l, x2, etali, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, etali, col=heat.colors(128))
contour(xl, x2, matrix(etali, ncol=length(x2)), add=TRUE)
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Second Order Polynomial

A second-order model may be appropriate near local optima
where f would have substantial curvature.

n = Bo+ fi1x1 + oz + B1177 + B273 + Praz1wa

# Define a function
simple.max <- function(xl, x2)
{50 + 8%x1 + 3%x2 - 7*x172 - 3*x272 - 4*xx1xx2}

eta2sm <- matrix(simple.max(gl,1], g[,2]), ncol=length(x2))
par (mfrow=c(1,2))
persp(xl, x2, eta2sm, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)

image(x1, x2, eta2sm, col=heat.colors(128))
contour(xl, x2, eta2sm, add=TRUE)
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Second Order Polynomial

Box and Draper (2007) & Myers, Montgomery, and
AndersonCook (2016) provide a beautiful diagram categorizing
all of the kinds of second-order surfaces one can encounter in an
RSM analysis.
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General models, inference and sequential design

The general first-order model on m process variables x1, ..., %,
is
n=Bo+ bix1+ Bax2 + -+ BmTm

and the general second-order model thus:

n=Bo+ Z Bixi + Z ,8”1' + Z Z BikTiTh

i=1 k=1

Inference from data can be carried out by ordinary least squares
(OLS) or maximum likelihood estimators (MLEs). In this case
are exactly the same. Check your course on linear regression or
for an good review including R examples, see Sheather (2009).
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General models, inference and sequential design

» Besides serving to illustrate RSM methods in action, we
shall see how important it is to organize the data collection
phase of a response surface study carefully.

» A design is a choice of x’s where we plan to observe y’s, for
the purpose of approximating f. Analysis and designs need
to be carefully matched.

» When using a first-order model, some designs are preferred
over others. When using a second-order model to capture
curvature, a different sort of design is appropriate.

» Design choices often contain features enabling modeling
assumptions to be challenged, e.g., to check if initial
impressions are supported by the data ultimately collected.
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Computer experiments

> Mathematical models implemented in computer codes are
now commonplace as a means of avoiding expensive field
data collection.

» Codes can be computationally intensive, solving systems of
differential equations, finite element analysis, Monte Carlo
quadrature/approximation, individual/agent based models
(I/ABM), and more.

» Highly nonlinear response surfaces, high signal-to-noise
ratios (often deterministic evaluations) and global scope
demands a new approach to design and modeling compared
to a classical RSM setting.

» As computing power has grown, so too has simulation
fidelity, adding depth in terms of both accuracy and
faithfulness to the best understanding of the physical,
biological, or social dynamics in play. L
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Example: weight wings

The following equation has been used to help understand the
weight of an unpainted light aircraft wing as a function of nine
design and operational parameters Forrester et al..

A

cos2 A

100,

W = 00365J58W0U?030( )06 0006/\0 04( ik ) O.S(NZde)OAQ

1)
where: Sy, is Wing area (ft2), Wy,, Weight of fuel in wing (Ib),
A Aspect ratios, A Quarter-chord sweep (deg), ¢ Dynamic
pressure at cruise (Ib/ft?),\ Taper ratio, Ry Aerofoil thickness
to chord ratio, N, Ultimate load factor, Wy, Final design gross
weight (1b)
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Wing Example

wingwt <- function(Sw=0.48, Wfw=0.4, A=0.38, L=0.5, gq=0.62, 1=0.344,
Rtc=0.4, Nz=0.37, Wdg=0.38)
{
## put coded inputs back on natural scale
Sw <- Swx(200 - 150) + 150
Wfw <- Wfw+(300 - 220) + 220
A <- Ax(10 - 6) + 6
L <- (L*(10 - (-10)) - 10) * pi/180
q <- gqx(45 - 16) + 16
1 <-1x(1 - 0.5) + 0.5
Rtc <- Rtc*(0.18 - 0.08) + 0.08
Nz <- Nzx(6 - 2.5) + 2.5
Wdg <- Wdg*(2500 - 1700) + 1700

## calculation on natural scale

W <- 0.036*%Sw"0.758 * Wfw~0.0035 * (A/cos(L)"2)70.6 * q~0.006
W <= Wx* 170.04 * (100%Rtc/cos(L))"(-0.3) * (Nz*Wdg)~(0.49)
return (W)
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Computer Model

Weight response as a function of N, and A with an
imagecontour plot.

x <- seq(0, 1, length=100)
g <- expand.grid(x, x)

W.A.Nz <- wingwt(A=g[,1], Nz=g[,2])

cs <- heat.colors(128)
bs <- seq(min(W.A.Nz), max(W.A.Nz), length=129)

image(x, x, matrix(W.A.Nz, ncol=length(x)), col=cs, breaks=bs,
xlab="A", ylab="Nz")
contour(x, x, matrix(W.A.Nz, ncol=length(x)), add=TRUE)

Apparently an aircraft wing is heavier when aspect ratios A are
high, and designed to cope with large g-forces (large N.), with a
compounding effect.
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Computer Model

Weight response as a function of taper ratio A and fuel weight
Wi

W.1l.Wfw <- wingwt(l=g[,1], Wfw=g[,2])

image(x, x, matrix(W.l.Wfw,ncol=length(x)), col=cs, breaks=bs,

xlab="1", ylab="Wfw")
contour(x,x, matrix(W.l.Wfw,ncol=length(x)), add=TRUE)
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Need for Surrogates

» For each pair we evaluated wingwt 10,000 times. Doing the
same for all pairs would require 360K evaluations, not a
reasonable number with a real computer simulation that
takes any non-trivial amount of time to evaluate.

> Even at just 1s per evaluation, presuming speedy but not
instantaneous numerical simulation in a slightly more
realistic setting, we’re talking > 100 hours.

» Many solvers take minutes/hours/days to execute a single

run. Even with great patience, or distributed evaluation in
an HPC setting, wed only really know about pairs.

» How about main effects or three-way interactions? A
different strategy is needed.

1y
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Surrogate modeling and design

» Computer model f(x): RP — R is expensive to evaluate.

» To economize on expensive runs, avoiding a grid in each
pair of coordinates say, the typical setup instead entails
choosing a small design X,, = z1,...,z, of locations in the
full m-dimensional space, (where m =9 for wingwt).

> Runs at those locations complete a set of n example
evaluation pairs (z;,y;), where y; ~ f(x;) for i =1,...,n.
Collect the n data pairs as D,, = (X,,,Y;,) where X, is an
n X m matrix and Y,, is an n-vector.

» Use these data to train a statistical (regression) model,
producing an emulator fn = f | D), whose predictive
equations may be used as a surrogate fy, (') for f(z') at
novel z’ locations in the m-dimensional input space.
¢
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Surrogate modeling and design

a Provide a predictive distribution f(z') whose mean can be
used as a surrogate for f(z') at new z’ locations and whose
variance provides uncertainty estimates intervals for f(z’)
- that have good coverage properties;

b may interpolate when computer model f is deterministic;

¢ can be used in any way f could have been used, qualified
with appropriate uncertainty quantification (i.e., bullet a
mapped to the intended use, say to optimize);

d and finally, fitting f and making predictions f(z') should
be much faster than working directly with f(z').

@
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Latin Hypercube & First-order Model

Just to see what might come up, let’s fit a parsimonious
first-order model with interactions, cheating with the log
response, using backward step-wise elimination with BIC. Other
alternatives include AIC with k = 2 below, or F-testing.

library(lhs)

n <- 1000

X <- data.frame(randomLHS(n, 9))
names (X) <- names(formals(wingwt))

plot(X[,1:2], pch=19, cex=0.5)
abline(h=c(0.6, 0.8), col=2, lwd=2)

inbox <- X[,1] > 0.6 & X[,1] < 0.8
sum(inbox) /nrow (X)

Y <- wingwt(X[,1], X[,2], X[,3], Xx[,4], X[,5], X[,61, X[,7], X[,8], X[,91)

fit.lm <- Im(log(Y) ~ ."2, data=data.frame(Y,X))
fit.lmstep <- step(fit.lm, scope=formula(fit.lm), direction="backward",
k=log(length(Y)), trace=0)
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Gaussian Process

library(1laGP)

fit.gp <- newGPsep(X, Y, 2, 1e-6, dK=TRUE)
mle <- mleGPsep(fit.gp)

baseline <- matrix(rep(as.numeric(formals(wingwt)), nrow(g)),
ncol=9, byrow=TRUE)

XX <- data.frame(baseline)

names (XX) <- names(X)

XX$A <- g[,1]

XX$Nz <- gl[,2]

p <- predGPsep(fit.gp, XX, lite=TRUE)
image(x, x, matrix(p$mean, ncol=length(x)), col=cs, breaks=bs,

xlab="A", ylab="Nz")
contour(x, x, matrix(p$mean, ncol=length(x)), add=TRUE)
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Gaussian Process

meql <- meq2 <- me <- matrix(NA, nrow=length(x), ncol=ncol(X))
for(i in 1:ncol(me)) {

XX <- data.frame(baseline) [1:1length(x),]

XX[,i] <= x

p <- predGPsep(fit.gp, XX, lite=TRUE)

me[,i] <- p$mean

meql[,i] <- qt(0.05, p$df)*sqrt(p$s2) + pPmean

meq2[,i] <- qt(0.95, p$df)*sqrt(p$s2) + pPmean
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