Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] o]

000000 0000000000000 000

Surrogates 7020
Chapter 5(Part 1): Gaussian Process Regression

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
e0 000000 0000000000000 000 o]

Gaussian Processes

» Our aim is to understand the Gaussian process (GP) as a
prior over random functions, a posterior over functions
given observed data, as a tool for spatial data modeling
and surrogate modeling for computer experiments, and
simply as a flexible nonparametric regression.

> We'll see that, almost in spite of a technical over-analysis
of its properties, and sometimes strange vocabulary used to
describe its features.

> GP regression is a simple extension of linear modeling.
Knowing that is all it takes to make use of it as a nearly
unbeatable regression tool when input—output relationships
are relatively smooth, and signal-to-noise ratios relatively
high.

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
oe 000000 0000000000000 000 o]

Gaussian Process

» Gaussian process is a stochastic process (a collection of
random variables indexed by input), such that every finite
collection of those random variables has a multivariate
normal (MVN) distribution.

» That, in turn, means that characteristics of those
realizations are completely described by their mean
n-vector p and n X n covariance matrix .

> With interest in modeling functions, we’ll sometimes use
the term mean function, thinking of p(x), and covariance
function, thinking of ¥(x, z’).

> But ultimately we’ll end up with vectors p and matrices X
after evaluating those functions at specific input locations
LT1y...,Lp.

“Cincinnati

(e]e]

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
o]

@00000 0000000000000 000

Gaussian Process Prior

| 4

>

The action, at least the part that’s interesting, in a GP
treatment of functions is all in the covariance.

Consider a covariance function defined by inverse
exponentiated squared Euclidean distance:

S(a, @) = exp {~[|z — 2'||*}

Here covariance decays exponentially fast as & and z’

become farther apart in the input, or x-space. In this
specification, observe that X(x,z) = 1 and X(x,z’) < 1 for

x # x.

The function ¥ (x,) must be positive definite. For us this
means that if we define a covariance matrix 3,,, based on
evaluating X(x,x) at pairs of n x-values @y, ..., x,, we

must have that =7 3z > 0 for all # 0. @

“Cincinnati

(e]e]

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
o]

0O®e0000 0000000000000 000

Generating a Sample from a GP

>

| 4

Let’s first see how GPs can be used to generate random
data following a smooth functional relationship.

Suppose we take a bunch of x-values: x1,...,x,, define 3,
via B% = Y(xj, x;), for i,j =1,...,n, then draw an
n-variate realization

Y ~ Nn(07 En)

One simple option for design is random uniform. That is,

fill a design matrix X, in [0, 1]™ with n runs via runif.

Note that the mean of this MVN is zero; this need not be

but it’s quite surprising how well things work even in this
special case.

Location invariant zero-mean GP modeling, sometimes

after subtracting off a middle value of the response (e.g.,

7), is the default in computer surrogate modeling and (ML)
literature. _—
More later for a general mean. o

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
oo 00000 0000000000000000 o

Algorithm for Generating a GP Sample

install.packages("plgp")

library(plgp)

n <- 100

X <- matrix(seq(0, 10, length=n), ncol=1)
D <- distance(X) # Distance Matrix

eps <- sqrt(.Machine$double.eps)

Sigma <- exp(-D) + diag(eps, n) # Covaraince matrix

library (mvtnorm)
Y <- rmvnorm(1l, sigma=Sigma) # Generating from GP

plot(X, Y, type="1")

$

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 000 o]

Some Properties

» The code augments the diagonal with a small number eps = e.
Although inverse exponentiated distances guarantee a positive
definite matrix in theory, sometimes in practice the matrix is
numerically ill-conditioned. Augmenting the diagonal a tiny bit
prevents that. Neal (1998), a GP vanguard in the statistical/ML
literature, calls € the jitter in this context.

» Because the Y-values are random, you’ll get a different curve
when you try this on your own.

» What are the properties of this function, or more precisely of a
random function generated in this way?

» Several are easy to deduce from the form of the covariance
structure.

» We'll get a range of about [—2, 2], with 95% probability,
because the scale of the covariance is 1, ignoring the jitter e
added to the diagonal.

> We'll get several bumps in the x-range of [0, 10] because)
short distances are highly correlated. g

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 0000e0 0000000000000 000 o]

Smooth Function

» The function plotted above is only a finite realization,
meaning that we really only have 100 pairs of points.

» Those points look smooth, in a tactile sense, because
they’re close together and because the plot function is
“connecting the dots” with lines.

» The full surface, which you might conceptually extend to
an infinite realization over a compact domain, is extremely
smooth in a calculus sense because the covariance
function is infinitely differentiable

» It has to do with the covariance function! We will
discussion this a little bit later.

@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 00000e 0000000000000 000 o]

Three Different Realizations

Besides those three things — scale of two, several bumps,
smooth look — we won’t be able to anticipate much else about
the nature of a particular realization. Example below:

Y <- rmvnorm(3, sigma=Sigma)
matplot (X, t(Y), type="1", ylab="Y")

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 9000000000000 000 o]

Gaussian process posterior

» Given examples of a function in pairs (z1,91), ..., (Tn,Yn),
comprising data D,, = (X,,Y,,): what random function
realizations could explain — could have generated — those
observed values?

» That is, we want to know about the conditional
distribution of Y (z)|D,,. If we call Y (z) ~ GP the prior,
then Y (x)|D,, must be the posterior.

> You do not really have to know Bayesian Statistics at this
point: the only thing you have to know is the conditional
distribution, Y (z)|D,,, which one might more simply call a
predictive distribution, and everybody is familiar with this
quantity in regression analysis.
@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 000 o]

Conditional Distribution

Deriving that predictive distribution is a simple application of
deducing a conditional from a (joint) MVN. If an N-dimensional

X) with sizes

random vector X is partitioned as X = (Xl
2

((N q_>;>1x 1> . Accordingly the mean p and X are partitioned:

I Y1 ¥g2
= 2 =
H (M2> (221 222)

then the distribution of X conditional on X5 = x5 is MVN

Xi|xa ~ Ny(fr, X2), where
= p1 + Z1255) (T2 — pa)

T =51 - 21255 Ty ¢

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 000 o]

Conditional Distribution Features

» An interesting feature of this result is that conditioning
upon o alters the variance of X;. Observe that 3 above is
reduced compared to its marginal analog >11.

» Reduction in variance when conditioning on data is a
hallmark of statistical learning. We know more — have less
uncertainty — after incorporating data.

» The amount by which variance is decreased doesn’t depend
(directly) on the value of @s.

» Observe that the mean is also altered, comparing p; to f.
In fact, the equation for @ is a linear mapping, i.e., of the
form ax + b for vectors a and b.

» Finally, note that X15 = X7, so that X is symmetric.

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0008000000000 000 o]

Prediction Distribution

How do we deploy that fundamental MVN result towards
deriving the GP predictive distribution Y (x)|D,,? Consider an
n + 1st observation Y (x). Allow Y (x) and Y, to have a joint
MVN distribution with mean zero and covariance function
Y(x,x). That is, stack:

Y(x
Yn+1 = (}(fn))
Apply the conditional representation above the predictive
distribution is Y (x)|D,, ~ N(u(x),c%(x)) where:
wx) = S(z, X,)2,'Y,
o?(x) = B(x,x) — B(x, X,) T, ' B(x, X,,)7

@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000@00000000000 o]

Prediction Distribution Features

» Observe that u(x) is linear in observations Y, so we have
a linear predictor! In fact it’s the best linear unbiased
predictor (BLUP), an argument we’ll leave to other texts
(e.g., Santner, Williams, and Notz 2018).

» Also notice that o%(z) is lower than the marginal variance.
So we learn something from data Y,,; in fact the amount
that variance goes down is a quadratic function of
distance between r and X,,.

» Learning is most efficient for & that are close to training
data locations X,,. However the amount learned doesn’t
depend upon Y,,.

@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 00000@0000000000 o]

Joint Prediction Distribution

The derivation above is for “pointwise” GP predictive
calculations. These are sometimes called the kriging equations,
especially in geospatial contexts. We can apply them,
separately, for many predictive/testing locations x, one x at a
time, but that would ignore the obvious correlation they’d
experience in a big MVN analysis. Alternatively, we may
consider a bunch of x locations jointly, in a testing design X of
n’ rows, say, all at once:

Y(X)’Dn ~ n’(u(X)v Z(X))
p(X) =S(X, X,)%, 'Y,
Y(X) = B(X,X) - 2(X, X)E 18X, X,)T

@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 000000@000000000 o]

Joint Prediction Distribution

where X(X, X,,) is an n’ x n matrix. Having a full covariance
structure offers a more complete picture of the random
functions which explain data under a GP posterior, but also
more computation. The n’ x n’ matrix (X) could be enormous
even for seemingly moderate n’.

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000@00000000 o]

Simple 1d GP prediction example

Consider a toy example in 1d where the response is a simple
sinusoid measured at eight equally spaced « -locations in the
span of a single period of oscillation. R code below provides
relevant data quantities, including pairwise squared distances
between the input locations collected in the matrix D, and its
inverse exponentiation in Sigma

n <- 8

X <- matrix(seq(0, 2+#pi, length=n), ncol=1)
y <= sin(X)

D <- distance(X)

Sigma <- exp(-D) + diag(eps, ncol(D))

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 00000000 e0000000 o]

Simple 1d GP prediction example

Now this is where the example diverges from our earlier one,
where we used such quantities to generate data from a GP
prior. Applying MVN conditioning equations requires similar
calculations on a testing design X, coded as XX below. We need
inverse exponentiated squared distances between those XX
locations

XX <- matrix(seq(-0.5, 2%pi + 0.5, length=100), ncol=1)

DXX <- distance(XX)
SXX <- exp(-DXX) + diag(eps, ncol(DXX))

between testing locations and training data locations X_n.

DX <- distance(XX, X)
SX <- exp(-DX)

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
oo 000000 0000000008000000 o

Simple 1d GP prediction example

XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1)
DXX <- distance(XX)
SXX <- exp(-DXX) + diag(eps, ncol(DXX))

between testing locations and training data locations X_n.

DX <- distance(XX, X)
SX <- exp(-DX)

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000 e00000 o]

Simple 1d GP prediction example

Mean vector and covariance matrix in hand, we may generate
Y-values from the posterior /predictive distribution Y (X)|D,, in
the same manner as we did from the prior. (Also calculate the
PI)

YY <- rmvnorm(100, mup, Sigmap)

ql <- mup + gnorm(0.05, O, sqrt(diag(Sigmap)))
g2 <- mup + gnorm(0.95, O, sqrt(diag(Sigmap)))

matplot (XX, t(YY), type="1", col="gray", lty=1, xlab="x", ylab="y")
points(X, y, pch=20, cex=2)

lines (XX, sin(XX), col="blue")

lines (XX, mup, lwd=2)

lines (XX, q1, lwd=2, lty=2, col=2)

lines (XX, q2, lwd=2, lty=2, col=2)

“Cincinnati

(e]e]

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
o]

000000 00000000000 e0000

What do we observe?

>

2

Notice how the predictive surface interpolates the data. That’s
because X(x,z) = 1 and X(x,z') — 1 as 2’ — x.

Error-bars take on a “football” (American) shape, or some say a
“sausage” shape, being widest at locations farthest from
x;-values in the data. Error-bars get really big outside the range
of the data, a typical feature in ordinary linear regression
settings.

But the predictive mean behaves rather differently than under an
ordinary linear model. For GPs it’s mean-reverting, eventually
leveling off to zero as x € X' gets far away from X,,. Predictive
variance, as exemplified by those error-bars, is also reverting to
something: a prior variance of 1.

Variance won’t continue to increase as x gets farther and farther
from X,,. Together those two “reversions” imply that although
we can’t trust extrapolations too far outside of the data range,
at least their behavior isn’t unpredictable, as can sometimes
happen in linear regression contexts, for example when based
upon feature-expanded (e.g., polynomial basis) covariates. "Cicvat

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 000000000000 e000 o]

Higher dimension?

There’s nothing particularly special about the presentation
above that would preclude application in higher input
dimension. Except perhaps that visualization is a lot simpler in
1d or 2d. We'll get to even higher dimensions with some of our
later examples. For now, consider a random function in 2d
sampled from a GP prior. The plan is to go back through the
process above: first prior, then (posterior) predictive, etc.

@

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 e00 o]

Drawing from 2d GP prior

Begin by creating an input set, X,,, in two dimensions. Here
we’ll use a regular 20 x 20 grid.

nx <- 20; x <- seq(0, 2, length=nx); X <- expand.grid(x, x)

D <- distance(X)
Sigma <- exp(-D) + diag(eps, nrow(X))
Y <- rmvnorm(2, sigma=Sigma)

par (mfrow=c(1,2))

persp(x, x, matrix(Y[1,], ncol=nx), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

persp(x, x, matrix(Y[2,], ncol=nx), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 0e0 o]

2d simple function

Consider the 2d function y(z) = z1 exp{—z} — ¥3} which is
highly nonlinear near the origin, but flat (zero) as inputs get
large. This function has become a benchmark 2d problem in the
literature for reasons that we’ll get more into in Chapter 9.

library(lhs)

X <- randomLHS(40, 2)

X[,1] <= (X[,1] - 0.5)%6 + 1
X[,2] <- (X[,2] - 0.5)*6 + 1

y <- X[,1]*exp(-X[,1]1"2 - X[,2]1°2)
#H#HH#H#

xx <- seq(-2, 4, length=40)

XX <- expand.grid(zx, xx)

D <- distance(X)
Sigma <- exp(-D)

“Cincinnati

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[o]e] 000000 0000000000000 00e o]

2d simple function

DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))
DX <- distance(XX, X)

SX <- exp(-DX)

Si <- solve(Sigma)

mup <- SX %*% Si %*) y

Sigmap <- SXX - SX %x) Si %% t(SX)
sdp <- sqrt(diag(Sigmap))

par (mfrow=c(1,2))

cols <- heat.colors(128)

image (xx, xx, matrix(mup, ncol=length(xx)), xlab="x1", ylab="x2", col=cols)
points(X[,1], X[,2])

image (xx, xx, matrix(sdp, ncol=length(xx)), xlab="x1", ylab="x2", col=cols)
points(X[,11, X[,21)

persp(xx, xx, matrix(mup, ncol=40), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

“Cincinnati

(e]e]

Gaussian Process Gaussian Process Prior Gaussian process posterior GP hyperparameters
[]

000000 0000000000000 000

GP hyperparameters

>

| 2

The GP is called (most of the times) a non-parametric
model or regression.

All this business about nonparametric regression and here
we are introducing parameters. (but with a different name:
hyperparamters)

How can one have hyperparameters without parameters to
start with, or at least to somehow distinguish from?

To make things even more confusing, we go about learning
those hyperparameters in the usual way, by optimizing
something, just like parameters. These hyperparameters
are more of a fine tuning.

The fact is that you can express the GPs with latent
variables (which we are not going to cover) and then model
the latent variable covariance and not the mean. @

“Cincinnati

	Gaussian Process
	Gaussian Process Prior
	Gaussian process posterior
	GP hyperparameters

