GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000000

Surrogates 7020
Chapter 5(Part 2): Gaussian Process Regression

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling

®00000

0000000000 00O0OO0O0O0O000 0000000000000

GP hyperparameters

>

| 4

The GP is called (most of the times) a non-parametric
model or regression.

All this business about nonparametric regression and here
we are introducing parameters. (but with a different name:
hyperparamters)

How can one have hyperparameters without parameters to
start with, or at least to somehow distinguish from?

To make things even more confusing, we go about learning
those hyperparameters in the usual way, by optimizing
something, just like parameters. These hyperparameters
are more of a fine tuning.

The fact is that you can express the GPs with latent
variables (which we are not going to cover) and then model
the latent variable covariance and not the mean. @

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
0e0000 000000000000 000000000000 0000000000000

GP hyperparameters

Suppose you want your GP prior to generate random functions
with an amplitude larger than two. You could introduce a scale
parameter 72 and then take ¥ = 72C,,. Here C,, is basically the
same as our X, from before: a correlation function for which
C(z,z) =1 and C(z,2") < 1 for z # 2/, and positive definite;
for example

C(z,2') = exp{~||lz — 2'||*}.

But we need a more nuanced notion of covariance to allow more
flexibility on scale, so we’re re-parameterizing a bit. Now our
MVN generator looks like:

Y ~ N, (0,72C,)

Write down the likelihood! Maximize the (log) likelihood with
respect to 72, just differentiate and solve. ol

GP hyperparameters Noise and nuggets Anisotropic modeling
00e000 000000000000 000000000000 0000000000000

Bayesian Approach

How would this analysis change if we were to take a Bayesian
approach? A homework exercise (5.5) invites the curious reader
to investigate the form of the posterior under prior

72 ~ IG(a/2,b/2). For example, what happens when a = b =0
which is equivalent to p(72) oc 1/72, a so-called reference prior
in this context (Berger, De Oliveira, and Sansé 2001; Berger,
Bernardo, and Sun 2009)?

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000e00 000000000000 000000000000 0000000000000

Prediction Distribution

» Estimate of scale 72 in hand, we may simply “plug it in” to
the predictive equations.

» Technically, when you estimate a variance and plug it into
a (multivariate) Gaussian, you're turning that Gaussian
into a (multivariate) Student-t, in this case with n degrees
of freedom (DoF). (There’s no loss of DoF when the mean
is assumed to be zero.) For details, see for example
Gramacy and Polson (2011).

P> For now, presume that n is large enough so that this distinction
doesn’t matter. So to summarize, we have the following
scale-adjusted (approximately) MVN predictive equations:

Y (X)[Dy, ~ Ny ((X), 72C (X))
u(X) =CXx,X,)C; Y,

S(X) =#2[C(X, X) — C(X, X,)C, ' C(X, X0) "] wa,

GP hyperparameters Noise and nuggets Anisotropic modeling
0000e0 000000000000 000000000000 0000000000000

Application

n <- 8
X <- matrix(seq(0, 2%pi, length=n), ncol=1)
y <- bx*sin(X)

D <- distance(X)

Sigma <- exp(-D)

XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1)
DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))

DX <- distance(XX, X)

SX <- exp(-DX)

Si <- solve(Sigma);

mup <- SX %*% Si %l y

Sigmap <- SXX - SX %x, Si %x% t(SX)

CX <- 8X
Ci <- Si
CXX <- SXX

tau2hat <- drop(t(y) %x*% Ci %x*% y / length(y))

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
00000e 000000000000 000000000000 0000000000000

Application

mup2 <- CX %x% Ci %*% y
Sigmap2 <- tau2hat*(CXX - CX %x% Ci %x% t(CX))

YY <- rmvnorm(100, mup2, Sigmap2)
ql <- mup + gnorm(0.05, O, sqrt(diag(Sigmap2)))
q2 <- mup + gnorm(0.95, 0, sqrt(diag(Sigmap2)))

matplot (XX, t(YY), type="1", col="gray", lty=1, xlab="x", ylab="y")
points(X, y, pch=20, cex=2)

lines (XX, mup, lwd=2)

lines (XX, 5*sin(XX), col="blue")

lines (XX, q1, lwd=2, 1lty=2, col=2); lines(XX, g2, lwd=2, 1lty=2, col=2)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling

000000

900000000000 000000000000 0000000000000

Noise and nuggets

> We've been saying “regression” for a while, but actually

interpolation is a more apt description. Regression is about
extracting signal from noise, or about smoothing over noisy
data, and so far our example training data have no noise.
By inspecting a GP prior, in particular its correlation
structure C(x, '), it’s clear that the current setup
precludes idiosyncratic behavior because correlation decays
smoothly as a function of distance. Observe that

C(xz,2') — 1 as @ — ', implying that the closer x is to
x’ the higher the correlation, until correlation is perfect,
which is what “connects the dots” when conditioning on
data and deriving the predictive distribution.

We must introduce a discontinuity between diagonal and
off-diagonal entries in the correlation matrix C,, to smooth
over noise.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 0O@0000000000000000000000 0000000000000

Correlation Form with Nugget

K(z,x') = C(z,z') + gé(z, x').

» Above, g > 0 is a new hyperparameter called the nugget (or
sometimes nugget effect), which determines the size of the
discontinuity as @’ — x. The function ¢ is more like the
Kronecker delta, although the way it’s written above makes it
look like the Dirac delta. Observe that g generalizes Neal’ s €
jitter.

» Neither delta is perfect in terms of describing what to do in
practice. The simplest, correct description, of how to break
continuity is to only add g on a diagonal — when indices of x are
the same, not simply for identical values — and nowhere else.

» Never add g to an off-diagonal correlation even if that correlation
is based on zero distances: i.e., identical and x’-values.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000000

Covariance Representation

Specifically, K(xi,2j) = C(x;, ;) when i # j, even if x; = x;;
only K(x;,x;) = C(x;, ;) + g. This leads to the following
representation of the data-generating mechanism.

Y ~ N, (0,7°K,)

Unfolding terms, covariance matrix ¥ contains entries
30 = 72(C(xi, z;) + gd(x4i, ;). Or in other words:

> =73(C +gl,)

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000e00000000000000000000 0000000000000

Latent Variable Representation

This is operationally equivalent to positing the following model:

Y(x) =w(x) +¢,

where w(x) ~ GP with scale 72, i.e., W ~ N, (0,72C,,), and ¢
is independent Gaussian noise with variance 72g, i.e.,
€ iid ~ N(0, 72g).

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 0000e0000000000000000000 0000000000000

Latent Variable Representation

A more aesthetically pleasing model might instead use

w(z) ~ GP with scale 72, i.e., W ~ N,(0,72C},), and where
e(x) is iid Gaussian noise with variance o2
e(x)iid ~ N(0,0?).

» An advantage of this representation is two totally
“separate” hyperparameters, with one acting to scale
noiseless spatial correlations, and another determining the
magnitude of white noise. Those two formulations are
actually equivalent. There’s a 1:1 mapping between the
two.

» Many researchers prefer the latter to the former on
intuition grounds. But inference in the latter is harder.
Conditional on g, 72 is available in closed form, which we’ll
show momentarily.

, l.e.,

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 00000@000000000000000000 0000000000000

Inference

» Conditional on g, 72 is available in closed form, which we’ll
show momentarily. Conditional on o2, numerical methods
are required for 72.

» Recall that C), is an n X n matrix of inverse exponentiated
pairwise squared Euclidean distances. How, then, to
estimate two hyperparameters: scale 72 and nugget g?
Again, we have all the usual suspects (MoM, likelihood,
CV, variogram) but likelihood-based methods are by far

most common.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000800000 000000000000 0000000000000

Profile Likelihood of the nugget

First, suppose that ¢ is known. The MLE of 72 given a fixed g is

,,A_2 — YnTKEIYn _ YnT(CTb + gH?’b)_lYn'
n n

Plug 72 back into our log likelihood to get a concentrated (or
profile) log likelihood involving just the remaining parameter g.

n n 1 1 _
i) = =5 log2m — Jlog(r?) = Slog| K| — o5 Y, K'Y, (1)
1
=c— glog Y K,'Y, — log|Ky| (2)

Maximizing [(g) requires numerical methods.

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 0000000 @0000000000000000 0000000000000

Profile Likelihood for Optimization

The simplest thing to do is throw it into optimize and let a
polished library do all the work. Since most optimization
libraries prefer to minimize, we’ll code up —I(g) in R. The nlg
function below doesn’t directly work on X inputs, rather
through distances D. This is slightly more efficient since
distances can be pre-calculated, rather than re-calculated in
each evaluation for new g.
nlg <- function(g, D, Y) {

n <- length(Y)

K <- exp(-D) + diag(g, n)

Ki <- solve(X)

ldetK <- determinant(K, logarithm=TRUE)$modulus

11 <= - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*1ldetK

counter <<- counter + 1
return(-11)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000008000 000000000000 0000000000000

Optimization

The counter is there for comparing alternatives on efficiency
grounds in numerical optimization, via the number of times our
likelihood objective function is evaluated. Although
optimization libraries often provide iteration counts on output,
sometimes that report can misrepresent the actual number of
objective function calls.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000 @00000000000000 0000000000000

Example Optimization

eps <- sqrt(.Machine$double.eps)
<- 8
<- matrix(seq(0, 2*pi, length=n), ncol=1)
rbind(X, X)
<- nrow(X)
<- 5*sin(X) + rnorm(n, sd=1)
<- distance(X)

O< B X MB
A
I

counter <- 0

g <- optimize(nlg, interval=c(eps, var(y)), D=D, Y=y)$minimum
g

K <- exp(-D) + diag(g, n)

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / n)

c(tau=sqrt(tau2hat), sigma=sqrt(tau2hatx*g))

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 0000000000 e0000000000000 0000000000000

Example Optimization

XX <- matrix(seq(-0.5, 2#pi + 0.5, length=100), ncol=1)
DX <- distance(XX, X)

DXX <- distance(XX)

KX <- exp(-DX)

KXX <- exp(-DXX) + diag(g, nrow(DXX))

HURHHHRAA AR

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat*(KXX - KX %*) Ki %*) t(KX))

ql <- mup + gnorm(0.05, 0, sqrt(diag(Sigmap)))

Q2 <- mup + gnorm(0.95, 0, sqrt(diag(Sigmap)))

Sigma.int <- tau2hat*(exp(-DXX) + diag(eps, nrow(DXX))
- KX %*% Ki %% t(KX))
YY <- rmvnorm(100, mup, Sigma.int)

matplot (XX, t(YY), type="1", lty=1, col="gray", xlab="x", ylab="y")
points(X, y, pch=20, cex=2)

lines (XX, mup, lwd=2)

lines (XX, 5*sin(XX), col="blue")

lines(XX, ql, lwd=2, lty=2, col=2)

lines(XX, q2, lwd=2, lty=2, col=2)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 00000000000 e000000000000 0000000000000

Derivative-based hyperparameter optimization

» It can be unsatisfying to brute-force an optimization for a
hyperparameter like g, even though 1d solving with
optimize is often superior to cleverer methods. Can we
improve upon the number of evaluations?

» Differentiating [(g) involves pushing the chain rule through
the inverse of covariance matrix K, and its determinant,
which is where hyperparameter ¢ is involved. The following
identities, which are framed for an arbitrary parameter ¢,
will come in handy.

6K7:1 1 0K,
96 -K, WKn
and Dlog | K| 0K
og | Bpn| -1 n
o0 tr{Kn 90 }

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 e00000000000 0000000000000

Derivative-based hyperparameter optimization

The chain rule, and a single application of each of the identities
above, gives

-1
gYnTaIgg Y, B 10log K,

! —
g) = =3 YTK;'Y, 2 OJg ®)
T —1\2
R T (®)

2 YIK,'Y, 2

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 0e0000000000 0000000000000

Using the gradient of —log(l(g)) in code

gnlg <- function(g, D, Y)
{
n <- length(Y)
K <- exp(-D) + diag(g, n)
Ki <- solve(K)
KiY <- Ki %% Y
dll <- (n/2) * t(XiY) %*% KiY / (£(Y) %*% KiY) - (1/2)*sum(diag(Ki))
return(-dll)

counter <- 0

out <- optim(0.1*var(y), nlg, gnlg, method="L-BFGS-B", lower=eps,
upper=var(y), D=D, Y=y)

c(g, out$par)

c(out$counts, actual=counter)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 00e000000000 0000000000000

Lengthscale: rate of decay of correlation

How about modulating the rate of decay of spatial correlation
in terms of distance? Surely unadulterated Fuclidean distance
isn’t equally suited to all data. Consider the following
generalization, known as the isotropic Gaussian family.

]2
Ola.a) = expf - 12210y,

> Isotropic Gaussian correlation functions are indexed by a
scalar hyperparameter 6, called the characteristic
lengthscale.

» Sometimes this is shortened to lengthscale, or 8 may be
referred to as a range parameter, especially in geostatistics.
When 6 = 1 we get back our inverse exponentiated squared
Euclidean distance-based correlation as a special case.

> Isotropy means that correlation decays radially; Gaussian
suggests inverse exponentiated squared Euclidean distance. e

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000e00000000 0000000000000

Inference on 6

» How to perform inference for 67

» Should our GP have a slow decay of correlation in space,
leading to visually smooth/slowly changing surfaces, or a
fast one looking more wiggly?

» Like with nugget g, embedding 6 deep within coordinates
of a covariance matrix thwarts analytic maximization of log
likelihood. Yet again like g, numerical methods are rather
straightforward. In fact the setup is identical except now
we have two unknown hyperparameters.

@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 0000e0000000 0000000000000

Algorithm on otpim for # and g

Consider brute-force optimization without derivatives. The R
function nl is identical to nlg except argument par takes in a
two-vector whose first coordinate is 6 and second is g. Only two
lines differ, and those are indicated by comments in the code
below.

nl <- function(par, D, Y)

{

theta <- par[1] ## change 1
g <- par[2]

n <- length(Y)

K <- exp(-D/theta) + diag(g, n) ## change 2

Ki <- solve(K)

ldetK <- determinant(K, logarithm=TRUE)$modulus

11 <= - (0/2)*1log(t(Y) %x*% Ki %*% Y) - (1/2)*ldetK
counter <<- counter + 1

return(-11)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 00000e000000 0000000000000

Algorithm on otpim for # and g

library(lhs)

X2 <- randomLHS (40, 2)

X2 <- rbind(X2, X2)

X2[,1] <- (X2[,1] - 0.5)%6 + 1

X2[,2] <= (X2[,2] - 0.5)*6 + 1

y2 <- X2[,1]*exp(-X2[,1]"2 - X2[,2]°2) + rnorm(nrow(X2), sd=0.01)
f s s n s S S s s s

D <- distance(X2)

counter <- 0

out <- optim(c(0.1, 0.1xvar(y2)), nl, method="L-BFGS-B", lower=eps,
upper=c(10, var(y2)), D=D, Y=y2)

out$par

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000e00000 0000000000000

Too Many Evaluations of GP

brute <- c(out$counts, actual=counter)
brute

function gradient actual
13 13 65
$

We’re searching in two input dimensions, and a rule of thumb is
that it takes two evaluations in each dimension to build a
tangent plane to approximate a derivative. So if 13 function
evaluations are reported, it’d take about 2 x 2 — 4 x 13 = 52
additional runs to approximate derivatives, which agrees with
our “by-hand” counter.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 0000000e0000 0000000000000

How can we improve upon those counts?

» Reducing the number of evaluations should speed up
computation time. It might not be a big deal now, but as n
gets bigger the repeated cubic cost of matrix inverses and
determinants really adds up.

» What if we take derivatives with respect to # and combine
with those for g to form a gradient? That requires
K, = 852", to plug into inverse and determinant derivative
identities. The diagonal is zero because the exponent is
zero no matter what 6 is. Off-diagonal entries of K,, work
out as follows.

]2
Kg(ic,ml) — exp{_ngwH}

we have
8K9 (iIZZ) a:j)
00

[l — 2|

= Ko (w’ L)) 2 g,

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 00000000e000 0000000000000

Gradient with respect to 6

A slightly more compact way to write the same thing would be
K, = K,, o Distn/0? where o is a component-wise, Hadamard
product, and Distn contains a matrix of squared Euclidean
distances — our D in the code. An identical application of the
chain rule for the nugget, but this time for 8, gives

olb,g) nY (K,'K,K;"Y, 1 1
0) = =3 n Y:TK;lY: _Etr(Kn K,) (5)

A vector collecting the two sets of derivatives forms the
gradient of 1(6, g), a joint log likelihood with 72 concentrated
out. R code below implements the negative of that gradient for
the purposes of MLE calculation with optim minimization.

@

“Eincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000e00 0000000000000

Gradient Function

gradnl <- function(par, D, Y)
{
extract parameters
theta <- par[1]
g <- par[2]

calculate covariance quantities from data and parameters
n <- length(Y)

K <- exp(-D/theta) + diag(g, n)

Ki <- solve(K)

dotK <- K*D/theta"2

KiY <- Ki %*% Y

theta component
dlltheta <- (n/2) * t(XiY) %* dotK %x*% KiY / (t(Y) %x*% KiY) -
(1/2)*sum(diag(Ki %*% dotK))

g component
dllg <- (n/2) * t(KiY) %*% KiY / (£(Y) %=*% KiY) - (1/2)*sum(diag(Ki))

combine the components into a gradient vector
return(-c(dlltheta, dllg))

} o,

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 0000000000e0 0000000000000

Optimization with Gradiant Information

counter <- 0

outg <- optim(c(0.1, 0.1*var(y2)), nl, gradnl, method="L-BFGS-B",
lower=eps, upper=c(10, var(y2)), D=D, Y=y2)

rbind(grad=outg$par, brute=out$par)

#########AH Efficiency Check ###########H####H#
AR

rbind(grad=c(outg$counts, actual=counter), brute)

function gradient actual
grad 10 10 10
#$# brute 13 13 65

That’s way better. No only does our actual “by-hand” count of
evaluations match what’s reported on output from optim, but it
can be an order of magnitude lower, roughly, compared to what
we had before. A factor of five-to-ten savings is definitely worth
the extra effort to derive and code up a gradient.

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 00000000000e 0000000000000

Back to the Prediction

K <- exp(- D/outg$par[1]) + diag(outg$par[2], nrow(X2))
Ki <- solve(K)
tau2hat <- drop(t(y2) %*% Ki %*% y2 / nrow(X2))

gn <- 40

xx <- seq(-2, 4, length=gn)

XX <- expand.grid(zx, xx)

DXX <- distance(XX)

KXX <- exp(-DXX/outg$par[1]) + diag(outg$par[2], ncol(DXX))
DX <- distance(XX, X2)

KX <- exp(-DX/outg$par[1])

mup <- KX %*% Ki %*% y2

Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

sdp <- sqrt(diag(Sigmap))

par (mfrow=c(1,2))

image (xx, xx, matrix(mup, ncol=gn), main="mean", xlab="x1",
ylab="x2", col=cols)

points(X2)

image(xx, xx, matrix(sdp, ncol=gn), main="sd", xlab="x1",
ylab="x2", col=cols)

points(X2)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 9000000000000

Anisotropic modeling

Lets assume a nonlinear surfacein five input coordinates with
mean and variance 1,

EY (z) = 10sin(rx122) + 20(x3 — 0.5)% + 1024 — 5z5,

fried <- function(n=50, m=6)
{
if(m < 5) stop("must have at least 5 cols")
X <- randomLHS(n, m)
Ytrue <- 10*sin(pi*X[,1]1*X[,2]) + 20%(X[,3] - 0.5)"2 + 10*X[,4] + 5*X[,5]
Y <- Ytrue + rnorm(n, 0, 1)
return(data.frame(X, Y, Ytrue))

}

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000000

Simulate from the above

Code below uses fried to generate an LHS training—testing
partition (see, e.g., Figure 4.9) with n = 200 and n’ = 1000
observations, respectively. Such a partition could represent one
instance in the “bakeoff” described by Algorithm 4.1.

m<-7

n <- 200

nprime <- 1000

data <- fried(n + nprime, m)

X <- as.matrix(data[l:n,1:m])

y <- drop(data$Y¥[1:n])

XX <- as.matrix(datal[(n + 1):(n + nprime),1:m])
yy <- drop(data$¥[(n + 1):(n + nprime)])

yytrue <- drop(data$¥truel[(n + 1):(n + nprime)])

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 00@0000000000

RMSE to see our fit

The code above extracts two types of Y-values for use in
out-of-sample testing. De-noised yytrue values facilitate
comparison with root mean-squared error (RMSE),

1 &
i)
i=1
Notice that RMSE is square-root Mahalanobis distance
calculated with an identity covariance matrix. Noisy
out-of-sample evaluations yy can be used for comparison by
proper score, combining both mean accuracy and estimates of
covariance.
@

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000000

Anisotropic modeling

Estimate the hyper-parameters (the same way we have done
already):

D <- distance(X)

out <- optim(c(0.1, O.1xvar(y)), nl, gradnl, method="L-BFGS-B", lower=eps,
upper=c(10, var(y)), D=D, Y=y)

out

$par

[1] 2.533216 0.005201

##

$value

[1] 683.5

##

$counts

function gradient

33 33

##

$convergence

##* [11 0

##

$message »
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" om}ﬁﬂ.

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000@00000000

Prediction

Estimate the hyper-parameters (the same way we have done
already):
K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(D))

Ki <- solve(K)
tau2hat <- drop(t(y) %% Ki %x% y / nrow(D))

mup <- KX %*% Ki %*) y
Sigmap <- tau2hat*(KXX - KX %*) Ki %x% t(XKX))

rmse <- c(gpiso=sqrt(mean((yytrue - mup)~2)))
rmse

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000080000000

Comparison to a non-parametric regression

How about comparing to MARS? That seems natural
considering these data were created as a showcase for that very
method. MARS implementations can be found in the mda
(Leisch, Hornik, and Ripley 2017) and earth (Milborrow 2019)
packages on CRAN.

install.packages("mda")

library(mda)

fit.mars <- mars(X, y)

p.mars <- predict(fit.mars, XX)

rmse <- c(rmse, mars=sqrt(mean((yytrue - p.mars)”~2)))
rmse

gpiso mars

1.107 1.518

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 000000@000000

Anisotropic Covariance function

How about the following generalization for the correlation?

m e —)2
Co(z, ') = exp{—z w}
k=1

Here we’re using a vectorized lengthscale parameter

0 = (61,...,0,,), allowing strength of correlation to be
modulated separately by distance in each input coordinate.
This family of correlation functions is called the separable or
anisotropic Gaussian. Separable because the sum is a product
when taken outside the exponent, implying independence in
each coordinate direction. Anisotopic because, except in the
special case where all 6, are equal, decay of correlation is not
radial. Remember that the mechanism generating our data has
covaraince matrix:

3(6, 2.9, n) = 7'2(09’”(:2, x') + gll,) (]

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000 e00000

Inference for a vectorized parameter How does one perform
inference for such a vectorized parameter? Simple; just expand
log likelihood and derivative functions to work with vectorized
0. Thinking about implementation: a for loop in the gradient
function can iterate over coordinates, wherein each iteration we
plug:

OKg(xi, ;) ||k — x|

00y, O

into our formula for I'(6x) in Eq. from the isotropic covariance
function above, which is otherwise unchanged.

= Ky(xi, ;)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 000000000000

Likelihood Function

nlsep <- function(par, X, Y)
{
theta <- par[1:ncol(X)]
g <- par[ncol(X)+1]
n <- length(Y)
K <- covar.sep(X, d=theta, g=g)
Ki <- solve(X)
ldetK <- determinant (K, logarithm=TRUE)$modulus
11 <= - (n/2)*1og(t(Y) %% Ki %*% Y) - (1/2)*1ldetK
counter <<- counter + 1
return(-11)

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000008000

Optimization

tic <- proc.time() [3]

counter <- 0

out <- optim(c(rep(0.1, ncol(X)), O0.1xvar(y)), nlsep, method="L-BFGS-B",
X=X, Y=y, lower=eps, upper=c(rep(10, ncol(X)), var(y)))

toc <- proc.time() [3]

out$par

brute <- c(out$counts, actual=counter)

brute
function gradient actual
66 66 1122

toc - tic

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000800

Gradient Function

gradnlsep <- function(par, X, Y)
{
theta <- par[1:ncol(X)]
g <- par[ncol(X)+1]
n <- length(Y)
K <- covar.sep(X, d=theta, g=g)
Ki <- solve(K)
KiY <- Ki %*% Y

loop over theta components
dlltheta <- rep(NA, length(theta))
for(k in 1:length(dlltheta)) {
dotK <- K * distance(X[,k])/(thetal[k]"2)
dllthetalk] <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -
(1/2)*sum(diag(Ki %*% dotK))
}

for g
dllg <- (n/2) * t(Ki¥) %*% KiY / (£(Y) %*% KiY) - (1/2)*sum(diag(Ki))

return(-c(dlltheta, dllg))
}

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 0000000000080

Gradient Function

tic <- proc.time() [3]

counter <- 0

outg <- optim(c(rep(0.1, ncol(X)), 0.1xvar(y)), nlsep, gradnlsep,
method="L-BFGS-B", lower=eps, upper=c(rep(10, ncol(X)), var(y)), X=X, Y=y)

toc <- proc.time() [3]

thetahat <- rbind(grad=outg$par, brute=out$par)

colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g")

thetahat

rbind(grad=c(outg$counts, actual=counter), brute)

function gradient actual
grad 135 135 135
brute 66 66 1122

toc - tic

“Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling
000000 000000000000 000000000000 00000000000 0e

Gradient Function

K <- covar.sep(X, d=outg$par[l:ncol(X)], g=outg$par[ncol(X)+1])

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))

KXX <- covar.sep(XX, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])
KX <- covar.sep(XX, X, d=outg$par[l:ncol(X)], g=0)

mup2 <- KX %*% Ki %*% y

Sigmap2 <- tauZhat*(KXX - KX %*% Ki %% t(XX))

rmse <- c(rmse, gpsep=sqrt(mean((yytrue - mup2)°2)))
rmse

gpiso mars gpsep
1.1071 1.5176 0.6512

“Cincinnati

	GP hyperparameters
	Noise and nuggets
	Anisotropic modeling

