
GP hyperparameters Noise and nuggets Anisotropic modeling

Surrogates 7020
Chapter 5(Part 2): Gaussian Process Regression

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

GP hyperparameters Noise and nuggets Anisotropic modeling

GP hyperparameters

I The GP is called (most of the times) a non-parametric
model or regression.

I All this business about nonparametric regression and here
we are introducing parameters. (but with a different name:
hyperparamters)

I How can one have hyperparameters without parameters to
start with, or at least to somehow distinguish from?

I To make things even more confusing, we go about learning
those hyperparameters in the usual way, by optimizing
something, just like parameters. These hyperparameters
are more of a fine tuning.

I The fact is that you can express the GPs with latent
variables (which we are not going to cover) and then model
the latent variable covariance and not the mean.

GP hyperparameters Noise and nuggets Anisotropic modeling

GP hyperparameters

Suppose you want your GP prior to generate random functions
with an amplitude larger than two. You could introduce a scale
parameter τ2 and then take Σ = τ2Cn. Here Cn is basically the
same as our Σn from before: a correlation function for which
C(x, x) = 1 and C(x, x′) < 1 for x 6= x′, and positive definite;
for example

C(x,x′) = exp{−||x− x′||2}.

But we need a more nuanced notion of covariance to allow more
flexibility on scale, so we’re re-parameterizing a bit. Now our
MVN generator looks like:

Y ∼ Nn(0, τ2Cn)

Write down the likelihood! Maximize the (log) likelihood with
respect to τ2, just differentiate and solve.

GP hyperparameters Noise and nuggets Anisotropic modeling

Bayesian Approach

How would this analysis change if we were to take a Bayesian
approach? A homework exercise (5.5) invites the curious reader
to investigate the form of the posterior under prior
τ2 ∼ IG(a/2, b/2). For example, what happens when a = b = 0
which is equivalent to p(τ2) ∝ 1/τ2, a so-called reference prior
in this context (Berger, De Oliveira, and Sansó 2001; Berger,
Bernardo, and Sun 2009)?

GP hyperparameters Noise and nuggets Anisotropic modeling

Prediction Distribution

I Estimate of scale τ̂2 in hand, we may simply “plug it in” to
the predictive equations.

I Technically, when you estimate a variance and plug it into
a (multivariate) Gaussian, you’re turning that Gaussian
into a (multivariate) Student-t, in this case with n degrees
of freedom (DoF). (There’s no loss of DoF when the mean
is assumed to be zero.) For details, see for example
Gramacy and Polson (2011).

I For now, presume that n is large enough so that this distinction
doesn’t matter. So to summarize, we have the following
scale-adjusted (approximately) MVN predictive equations:

Y (X)|Dn ∼ Nn′(µ(X), τ2C(X))

µ(X) = C(X ,Xn)C−1n Yn

Σ(X) = τ̂2[C(X ,X)− C(X ,Xn)C−1n C(X ,Xn)T]

GP hyperparameters Noise and nuggets Anisotropic modeling

Application

n <- 8

X <- matrix(seq(0, 2*pi, length=n), ncol=1)

y <- 5*sin(X)

D <- distance(X)

Sigma <- exp(-D)

XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1)

DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))

DX <- distance(XX, X)

SX <- exp(-DX)

Si <- solve(Sigma);

mup <- SX %*% Si %*% y

Sigmap <- SXX - SX %*% Si %*% t(SX)

CX <- SX

Ci <- Si

CXX <- SXX

tau2hat <- drop(t(y) %*% Ci %*% y / length(y))

GP hyperparameters Noise and nuggets Anisotropic modeling

Application

mup2 <- CX %*% Ci %*% y

Sigmap2 <- tau2hat*(CXX - CX %*% Ci %*% t(CX))

YY <- rmvnorm(100, mup2, Sigmap2)

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap2)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap2)))

#################################

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2)

lines(XX, 5*sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

GP hyperparameters Noise and nuggets Anisotropic modeling

Noise and nuggets

I We’ve been saying “regression” for a while, but actually
interpolation is a more apt description. Regression is about
extracting signal from noise, or about smoothing over noisy
data, and so far our example training data have no noise.

I By inspecting a GP prior, in particular its correlation
structure C(x,x′), it’s clear that the current setup
precludes idiosyncratic behavior because correlation decays
smoothly as a function of distance. Observe that
C(x,x′) −→ 1 as x −→ x′, implying that the closer x is to
x′ the higher the correlation, until correlation is perfect,
which is what “connects the dots” when conditioning on
data and deriving the predictive distribution.

I We must introduce a discontinuity between diagonal and
off-diagonal entries in the correlation matrix Cn to smooth
over noise.

GP hyperparameters Noise and nuggets Anisotropic modeling

Correlation Form with Nugget

K(x,x′) = C(x,x′) + gδ(x,x′).

I Above, g > 0 is a new hyperparameter called the nugget (or
sometimes nugget effect), which determines the size of the
discontinuity as x′ −→ x. The function δ is more like the
Kronecker delta, although the way it’s written above makes it
look like the Dirac delta. Observe that g generalizes Neal’ s ε
jitter.

I Neither delta is perfect in terms of describing what to do in
practice. The simplest, correct description, of how to break
continuity is to only add g on a diagonal – when indices of x are
the same, not simply for identical values – and nowhere else.

I Never add g to an off-diagonal correlation even if that correlation
is based on zero distances: i.e., identical x and x′-values.

GP hyperparameters Noise and nuggets Anisotropic modeling

Covariance Representation

Specifically, K(xi, xj) = C(xi,xj) when i 6= j, even if xi = xj ;
only K(xi,xi) = C(xi,xi) + g. This leads to the following
representation of the data-generating mechanism.

Y ∼ Nn(0, τ2Kn)

Unfolding terms, covariance matrix Σ contains entries
Σij = τ2(C(xi,xj) + gδ(xi,xj)). Or in other words:

Σ = τ2(C + gIn)

GP hyperparameters Noise and nuggets Anisotropic modeling

Latent Variable Representation

This is operationally equivalent to positing the following model:

Y (x) = w(x) + ε,

where w(x) ∼ GP with scale τ2, i.e., W ∼ Nn(0, τ2Cn), and ε
is independent Gaussian noise with variance τ2g, i.e.,
ε iid ∼ N (0, τ2g).

GP hyperparameters Noise and nuggets Anisotropic modeling

Latent Variable Representation

A more aesthetically pleasing model might instead use
w(x) ∼ GP with scale τ2, i.e., W ∼ Nn(0, τ2Cn), and where
ε(x) is iid Gaussian noise with variance σ2, i.e.,
ε(x)iid ∼ N (0, σ2).

I An advantage of this representation is two totally
“separate” hyperparameters, with one acting to scale
noiseless spatial correlations, and another determining the
magnitude of white noise. Those two formulations are
actually equivalent. There’s a 1:1 mapping between the
two.

I Many researchers prefer the latter to the former on
intuition grounds. But inference in the latter is harder.
Conditional on g, τ̂2 is available in closed form, which we’ll
show momentarily.

GP hyperparameters Noise and nuggets Anisotropic modeling

Inference

I Conditional on g, τ̂2 is available in closed form, which we’ll
show momentarily. Conditional on σ2, numerical methods
are required for τ̂2.

I Recall that Cn is an n× n matrix of inverse exponentiated
pairwise squared Euclidean distances. How, then, to
estimate two hyperparameters: scale τ2 and nugget g?
Again, we have all the usual suspects (MoM, likelihood,
CV, variogram) but likelihood-based methods are by far
most common.

GP hyperparameters Noise and nuggets Anisotropic modeling

Profile Likelihood of the nugget

First, suppose that g is known. The MLE of τ2 given a fixed g is

τ̂2 =
Y T
n K

−1
n Yn
n

=
Y T
n (Cn + gIn)−1Yn

n
.

Plug τ̂2 back into our log likelihood to get a concentrated (or
profile) log likelihood involving just the remaining parameter g.

l(g) = −n
2
log2π − n

2
log(τ2)− 1

2
log|Kn| −

1

2τ2
Y T
n K

−1
n Yn (1)

= c− n

2
logY T

n K
−1
n Yn −

1

2
log |Kn| (2)

Maximizing l(g) requires numerical methods.

GP hyperparameters Noise and nuggets Anisotropic modeling

Profile Likelihood for Optimization

The simplest thing to do is throw it into optimize and let a
polished library do all the work. Since most optimization
libraries prefer to minimize, we’ll code up −l(g) in R. The nlg
function below doesn’t directly work on X inputs, rather
through distances D. This is slightly more efficient since
distances can be pre-calculated, rather than re-calculated in
each evaluation for new g.

nlg <- function(g, D, Y) {

n <- length(Y)

K <- exp(-D) + diag(g, n)

Ki <- solve(K)

ldetK <- determinant(K, logarithm=TRUE)$modulus

ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK

counter <<- counter + 1

return(-ll)

}

$

GP hyperparameters Noise and nuggets Anisotropic modeling

Optimization

The counter is there for comparing alternatives on efficiency
grounds in numerical optimization, via the number of times our
likelihood objective function is evaluated. Although
optimization libraries often provide iteration counts on output,
sometimes that report can misrepresent the actual number of
objective function calls.

GP hyperparameters Noise and nuggets Anisotropic modeling

Example Optimization

eps <- sqrt(.Machine$double.eps)

n <- 8

X <- matrix(seq(0, 2*pi, length=n), ncol=1)

X <- rbind(X, X)

n <- nrow(X)

y <- 5*sin(X) + rnorm(n, sd=1)

D <- distance(X)

####################

counter <- 0

g <- optimize(nlg, interval=c(eps, var(y)), D=D, Y=y)$minimum

g

K <- exp(-D) + diag(g, n)

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / n)

c(tau=sqrt(tau2hat), sigma=sqrt(tau2hat*g))

GP hyperparameters Noise and nuggets Anisotropic modeling

Example Optimization

XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1)

DX <- distance(XX, X)

DXX <- distance(XX)

KX <- exp(-DX)

KXX <- exp(-DXX) + diag(g, nrow(DXX))

#################

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

Sigma.int <- tau2hat*(exp(-DXX) + diag(eps, nrow(DXX))

- KX %*% Ki %*% t(KX))

YY <- rmvnorm(100, mup, Sigma.int)

#####################################

matplot(XX, t(YY), type="l", lty=1, col="gray", xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2)

lines(XX, 5*sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2)

lines(XX, q2, lwd=2, lty=2, col=2)

GP hyperparameters Noise and nuggets Anisotropic modeling

Derivative-based hyperparameter optimization

I It can be unsatisfying to brute-force an optimization for a
hyperparameter like g, even though 1d solving with
optimize is often superior to cleverer methods. Can we
improve upon the number of evaluations?

I Differentiating l(g) involves pushing the chain rule through
the inverse of covariance matrix Kn and its determinant,
which is where hyperparameter g is involved. The following
identities, which are framed for an arbitrary parameter φ,
will come in handy.

∂K−1n
∂φ

= −K−1n
∂Kn

∂φ
Kn

and
∂ log |Kn|

∂φ
= tr

{
K−1n

∂Kn

∂φ

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Derivative-based hyperparameter optimization

The chain rule, and a single application of each of the identities
above, gives

l′(g) = −n
2

Y T
n
∂K−1

n
∂g Yn

Y T
n K

−1
n Yn

− 1

2

∂ logKn

∂g
(3)

=
n

2

Y T
n (K−1n)2Yn

Y T
n K

−1
n Yn

− 1

2
tr(K−1n) (4)

GP hyperparameters Noise and nuggets Anisotropic modeling

Using the gradient of − log(l(g)) in code

gnlg <- function(g, D, Y)

{

n <- length(Y)

K <- exp(-D) + diag(g, n)

Ki <- solve(K)

KiY <- Ki %*% Y

dll <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))

return(-dll)

}

###################

counter <- 0

out <- optim(0.1*var(y), nlg, gnlg, method="L-BFGS-B", lower=eps,

upper=var(y), D=D, Y=y)

c(g, out$par)

c(out$counts, actual=counter)

GP hyperparameters Noise and nuggets Anisotropic modeling

Lengthscale: rate of decay of correlation

How about modulating the rate of decay of spatial correlation
in terms of distance? Surely unadulterated Euclidean distance
isn’t equally suited to all data. Consider the following
generalization, known as the isotropic Gaussian family.

C(x,x′) = exp{−||x− x
′||2

θ
}.

I Isotropic Gaussian correlation functions are indexed by a
scalar hyperparameter θ, called the characteristic
lengthscale.

I Sometimes this is shortened to lengthscale, or θ may be
referred to as a range parameter, especially in geostatistics.
When θ = 1 we get back our inverse exponentiated squared
Euclidean distance-based correlation as a special case.

I Isotropy means that correlation decays radially; Gaussian
suggests inverse exponentiated squared Euclidean distance.

GP hyperparameters Noise and nuggets Anisotropic modeling

Inference on θ

I How to perform inference for θ?
I Should our GP have a slow decay of correlation in space,

leading to visually smooth/slowly changing surfaces, or a
fast one looking more wiggly?

I Like with nugget g, embedding θ deep within coordinates
of a covariance matrix thwarts analytic maximization of log
likelihood. Yet again like g, numerical methods are rather
straightforward. In fact the setup is identical except now
we have two unknown hyperparameters.

GP hyperparameters Noise and nuggets Anisotropic modeling

Algorithm on otpim for θ and g

Consider brute-force optimization without derivatives. The R
function nl is identical to nlg except argument par takes in a
two-vector whose first coordinate is θ and second is g. Only two
lines differ, and those are indicated by comments in the code
below.

nl <- function(par, D, Y)

{

theta <- par[1] ## change 1

g <- par[2]

n <- length(Y)

K <- exp(-D/theta) + diag(g, n) ## change 2

Ki <- solve(K)

ldetK <- determinant(K, logarithm=TRUE)$modulus

ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK

counter <<- counter + 1

return(-ll)

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Algorithm on otpim for θ and g

library(lhs)

X2 <- randomLHS(40, 2)

X2 <- rbind(X2, X2)

X2[,1] <- (X2[,1] - 0.5)*6 + 1

X2[,2] <- (X2[,2] - 0.5)*6 + 1

y2 <- X2[,1]*exp(-X2[,1]^2 - X2[,2]^2) + rnorm(nrow(X2), sd=0.01)

##

D <- distance(X2)

counter <- 0

out <- optim(c(0.1, 0.1*var(y2)), nl, method="L-BFGS-B", lower=eps,

upper=c(10, var(y2)), D=D, Y=y2)

out$par

GP hyperparameters Noise and nuggets Anisotropic modeling

Too Many Evaluations of GP

brute <- c(out$counts, actual=counter)

brute

function gradient actual

13 13 65

$

We’re searching in two input dimensions, and a rule of thumb is
that it takes two evaluations in each dimension to build a
tangent plane to approximate a derivative. So if 13 function
evaluations are reported, it’d take about 2× 2 −→ 4× 13 = 52
additional runs to approximate derivatives, which agrees with
our “by-hand” counter.

GP hyperparameters Noise and nuggets Anisotropic modeling

How can we improve upon those counts?

I Reducing the number of evaluations should speed up
computation time. It might not be a big deal now, but as n
gets bigger the repeated cubic cost of matrix inverses and
determinants really adds up.

I What if we take derivatives with respect to θ and combine
with those for g to form a gradient? That requires
K̇n = ∂Kn

∂θ , to plug into inverse and determinant derivative
identities. The diagonal is zero because the exponent is
zero no matter what θ is. Off-diagonal entries of K̇n work
out as follows.

Kθ(x,x
′) = exp

{
−||x− x

′||2

θ

}
we have

∂Kθ(xi,xj)

∂θ
= Kθ(xi,xj)

||x− x′||2

θ

GP hyperparameters Noise and nuggets Anisotropic modeling

Gradient with respect to θ

A slightly more compact way to write the same thing would be
K̇n = Kn ◦Distn/θ2 where ◦ is a component-wise, Hadamard
product, and Distn contains a matrix of squared Euclidean
distances – our D in the code. An identical application of the
chain rule for the nugget, but this time for θ, gives

l′(θ) =
∂l(θ, g)

∂θ
=
n

2

Y T
n (K−1n K̇nK

−1
n)Yn

Y T
n K

−1
n Yn

− 1

2
tr(K−1n K̇n) (5)

A vector collecting the two sets of derivatives forms the
gradient of l(θ, g), a joint log likelihood with τ2 concentrated
out. R code below implements the negative of that gradient for
the purposes of MLE calculation with optim minimization.

GP hyperparameters Noise and nuggets Anisotropic modeling

Gradient Function

gradnl <- function(par, D, Y)

{

extract parameters

theta <- par[1]

g <- par[2]

calculate covariance quantities from data and parameters

n <- length(Y)

K <- exp(-D/theta) + diag(g, n)

Ki <- solve(K)

dotK <- K*D/theta^2

KiY <- Ki %*% Y

theta component

dlltheta <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

(1/2)*sum(diag(Ki %*% dotK))

g component

dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))

combine the components into a gradient vector

return(-c(dlltheta, dllg))

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Optimization with Gradiant Information

counter <- 0

outg <- optim(c(0.1, 0.1*var(y2)), nl, gradnl, method="L-BFGS-B",

lower=eps, upper=c(10, var(y2)), D=D, Y=y2)

rbind(grad=outg$par, brute=out$par)

###

########### Efficiency Check ################

###

rbind(grad=c(outg$counts, actual=counter), brute)

function gradient actual

grad 10 10 10

#$# brute 13 13 65

That’s way better. No only does our actual “by-hand” count of
evaluations match what’s reported on output from optim, but it
can be an order of magnitude lower, roughly, compared to what
we had before. A factor of five-to-ten savings is definitely worth
the extra effort to derive and code up a gradient.

GP hyperparameters Noise and nuggets Anisotropic modeling

Back to the Prediction

K <- exp(- D/outg$par[1]) + diag(outg$par[2], nrow(X2))

Ki <- solve(K)

tau2hat <- drop(t(y2) %*% Ki %*% y2 / nrow(X2))

gn <- 40

xx <- seq(-2, 4, length=gn)

XX <- expand.grid(xx, xx)

DXX <- distance(XX)

KXX <- exp(-DXX/outg$par[1]) + diag(outg$par[2], ncol(DXX))

DX <- distance(XX, X2)

KX <- exp(-DX/outg$par[1])

mup <- KX %*% Ki %*% y2

Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

sdp <- sqrt(diag(Sigmap))

par(mfrow=c(1,2))

image(xx, xx, matrix(mup, ncol=gn), main="mean", xlab="x1",

ylab="x2", col=cols)

points(X2)

image(xx, xx, matrix(sdp, ncol=gn), main="sd", xlab="x1",

ylab="x2", col=cols)

points(X2)

GP hyperparameters Noise and nuggets Anisotropic modeling

Anisotropic modeling

Lets assume a nonlinear surfacein five input coordinates with
mean and variance 1,

EY (x) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 − 5x5,

fried <- function(n=50, m=6)

{

if(m < 5) stop("must have at least 5 cols")

X <- randomLHS(n, m)

Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3] - 0.5)^2 + 10*X[,4] + 5*X[,5]

Y <- Ytrue + rnorm(n, 0, 1)

return(data.frame(X, Y, Ytrue))

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Simulate from the above

Code below uses fried to generate an LHS training–testing
partition (see, e.g., Figure 4.9) with n = 200 and n′ = 1000
observations, respectively. Such a partition could represent one
instance in the “bakeoff” described by Algorithm 4.1.

m <- 7

n <- 200

nprime <- 1000

data <- fried(n + nprime, m)

X <- as.matrix(data[1:n,1:m])

y <- drop(data$Y[1:n])

XX <- as.matrix(data[(n + 1):(n + nprime),1:m])

yy <- drop(data$Y[(n + 1):(n + nprime)])

yytrue <- drop(data$Ytrue[(n + 1):(n + nprime)])

GP hyperparameters Noise and nuggets Anisotropic modeling

RMSE to see our fit

The code above extracts two types of Y-values for use in
out-of-sample testing. De-noised yytrue values facilitate
comparison with root mean-squared error (RMSE),√√√√ 1

n′

n′∑
i=1

(yi − µ(xi))2.

Notice that RMSE is square-root Mahalanobis distance
calculated with an identity covariance matrix. Noisy
out-of-sample evaluations yy can be used for comparison by
proper score, combining both mean accuracy and estimates of
covariance.

GP hyperparameters Noise and nuggets Anisotropic modeling

Anisotropic modeling

Estimate the hyper-parameters (the same way we have done
already):

D <- distance(X)

out <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B", lower=eps,

upper=c(10, var(y)), D=D, Y=y)

out

$par

[1] 2.533216 0.005201

##

$value

[1] 683.5

##

$counts

function gradient

33 33

##

$convergence

[1] 0

##

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

GP hyperparameters Noise and nuggets Anisotropic modeling

Prediction

Estimate the hyper-parameters (the same way we have done
already):

K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(D))

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(D))

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

rmse <- c(gpiso=sqrt(mean((yytrue - mup)^2)))

rmse

GP hyperparameters Noise and nuggets Anisotropic modeling

Comparison to a non-parametric regression

How about comparing to MARS? That seems natural
considering these data were created as a showcase for that very
method. MARS implementations can be found in the mda
(Leisch, Hornik, and Ripley 2017) and earth (Milborrow 2019)
packages on CRAN.

install.packages("mda")

library(mda)

fit.mars <- mars(X, y)

p.mars <- predict(fit.mars, XX)

rmse <- c(rmse, mars=sqrt(mean((yytrue - p.mars)^2)))

rmse

gpiso mars

1.107 1.518

GP hyperparameters Noise and nuggets Anisotropic modeling

Anisotropic Covariance function

How about the following generalization for the correlation?

Cθ(x,x′) = exp{−
m∑
k=1

(xk − x′k)2

θk
}

Here we’re using a vectorized lengthscale parameter
θ = (θ1, . . . , θm), allowing strength of correlation to be
modulated separately by distance in each input coordinate.
This family of correlation functions is called the separable or
anisotropic Gaussian. Separable because the sum is a product
when taken outside the exponent, implying independence in
each coordinate direction. Anisotopic because, except in the
special case where all θk are equal, decay of correlation is not
radial. Remember that the mechanism generating our data has
covaraince matrix:

Σ(θ, τ2, g, n) = τ2(Cθ,n(x,x′) + gIn)

GP hyperparameters Noise and nuggets Anisotropic modeling

Inference for a vectorized parameter How does one perform
inference for such a vectorized parameter? Simple; just expand
log likelihood and derivative functions to work with vectorized
θ. Thinking about implementation: a for loop in the gradient
function can iterate over coordinates, wherein each iteration we
plug:

∂Kθ(xi,xj)

∂θk
= Kθ(xi,xj)

||xik − xjk||2

θk

into our formula for l′(θk) in Eq. from the isotropic covariance
function above, which is otherwise unchanged.

GP hyperparameters Noise and nuggets Anisotropic modeling

Likelihood Function

nlsep <- function(par, X, Y)

{

theta <- par[1:ncol(X)]

g <- par[ncol(X)+1]

n <- length(Y)

K <- covar.sep(X, d=theta, g=g)

Ki <- solve(K)

ldetK <- determinant(K, logarithm=TRUE)$modulus

ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK

counter <<- counter + 1

return(-ll)

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Optimization

##############################

tic <- proc.time()[3]

counter <- 0

out <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, method="L-BFGS-B",

X=X, Y=y, lower=eps, upper=c(rep(10, ncol(X)), var(y)))

toc <- proc.time()[3]

out$par

brute <- c(out$counts, actual=counter)

brute

function gradient actual

66 66 1122

toc - tic

GP hyperparameters Noise and nuggets Anisotropic modeling

Gradient Function

gradnlsep <- function(par, X, Y)

{

theta <- par[1:ncol(X)]

g <- par[ncol(X)+1]

n <- length(Y)

K <- covar.sep(X, d=theta, g=g)

Ki <- solve(K)

KiY <- Ki %*% Y

loop over theta components

dlltheta <- rep(NA, length(theta))

for(k in 1:length(dlltheta)) {

dotK <- K * distance(X[,k])/(theta[k]^2)

dlltheta[k] <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

(1/2)*sum(diag(Ki %*% dotK))

}

for g

dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))

return(-c(dlltheta, dllg))

}

GP hyperparameters Noise and nuggets Anisotropic modeling

Gradient Function

tic <- proc.time()[3]

counter <- 0

outg <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, gradnlsep,

method="L-BFGS-B", lower=eps, upper=c(rep(10, ncol(X)), var(y)), X=X, Y=y)

toc <- proc.time()[3]

thetahat <- rbind(grad=outg$par, brute=out$par)

colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g")

thetahat

rbind(grad=c(outg$counts, actual=counter), brute)

function gradient actual

grad 135 135 135

brute 66 66 1122

toc - tic

GP hyperparameters Noise and nuggets Anisotropic modeling

Gradient Function

K <- covar.sep(X, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))

KXX <- covar.sep(XX, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])

KX <- covar.sep(XX, X, d=outg$par[1:ncol(X)], g=0)

mup2 <- KX %*% Ki %*% y

Sigmap2 <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

rmse <- c(rmse, gpsep=sqrt(mean((yytrue - mup2)^2)))

rmse

gpiso mars gpsep

1.1071 1.5176 0.6512

	GP hyperparameters
	Noise and nuggets
	Anisotropic modeling

