Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

Surrogates 7020
Chapter 6: Model-based Design for GPs

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

Model Based Design

» A model-based design is one where the model says what X,, it wants
according to a criterion targeting some aspect of its fit.

» Example targets include the quality of estimates for parameters or
hyperparameters, or accuracy of predictions at particular inputs
out-of-sample, or over the entire input space.

» With a first-order linear model, you may recall from an elementary
design course that maximizing spread in X,, maximizes leverage and
therefore minimizes the standard error of S-values.

» An optimal design for learning regression coefficients places inputs at
the corners of the experimental region, for better or worse.

» Linear models are highly parametric. Parameter settings are
intimately linked to the underlying predictor.

» With GPs, a nonparametric model whose hyperparameterization is
only loosely connected to the predictive distribution, you might think
a different strategy is required. But principles are largely the same.

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

Model Based Design

The general program is to specify a criterion J(X,,), and
optimize that criterion with respect to X,
. Assuming maximization,

X, = argmax J(X,,),
X7L
which is typically solved numerically. Except when essential for
clarity, I shall generally drop the * superscript in X, indicating
an optimally chosen design.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00@00000000000 0000000000000 00000 0000000 000000

Maximum Entropy Design

The entropy of a density p(z) is defined as

H(X) = = [pla)logp(a)de.

Entropy is larger when p(x) is more uniform. You can think of
it as a measure of surprise in random draws from the
distribution corresponding to p. A uniform draw always yields a
surprising, unpredictable, random value. Entropy is maximized
for this choice of p. At the other end of the spectrum, a
point-spike p, where all density is concentrated on a single
point, offers no surprise. A draw from such a distribution yields
the same value every time. Its entropy is zero.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000e0000000000 0000000000000 00000 0000000 000000

AA

Information is the negative of entropy, I = —H. More
information is less uniformity, less surprise. To see how
information and entropy can relate to design, consider the
following. Suppose X is a fixed, finite set of points in the input
space. Place latent functions F' at & under a GP prior p(F|X);
see 5.3.2. Let Ix denote the information of that prior. Now,
denote F restricted to X C X as F'x with implied prior
p(Fx|X) and information Ix. For a particular choice X,, C X,
we have that

Iy = Ix, + E(Fx,{Ix_x,|D,}>
where D,, = (X,,,Y,,) is the completion of X,, with a
noise-augmented F},.

1y

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
0000e000000000 0000000000000 00000 0000000 000000

Information partitioned

Ix = Ix, + E(Fx,{Ix_x,|D, }

This equation in fact partitions information between the
amount soaked up, and amount left over after selecting X,,.
Choosing X, to maximize the expected information in
prediction of latent function values, i.e., the amount soaked up
by second term, is equivalent to minimizing the information Ix,
left over (maximizing entropy, Hx,) in the distribution of F, .
A solution to that optimization problem is a so-called maximum
entropy (or maxent) design. For more details see Shewry and
Wynn (1987), who introduced the concept as a design criterion
for spatial models. Maxent was appropriated for computer
experiments by Currin et al. (1991) and TJ Mitchell and Scott
(1987).

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000008000000 00 0000000000000 00000 0000000 000000

Maximizing the Entropy in Practice

That distribution — either for F'x, or it’s noisy analog for
D,, = (X,,,Y,), depending on your preferred interpretation
(5.3.2) — ultimately involves:

Y, ~ N, (0,72 K,,)

with K% = Cy(x;, xj) + gdi;. MVN conditionals yield the
posterior predictive Y (x)|D,, . One can show that the
entropy of that distribution, for Y,, observed at X,, is
maximized when |K,| is maximized. For a complete
derivation, see Section 6.2.1 of Santner, Williams, and Notz
(2018). Recall that K, depends on design X,,, usually through
inverse exponentiation pairwise squared distances.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000800000 00 0000000000000 00000 0000000 000000

One obstacle

» K, and thus |K,| also depend on hyperparameters,
exemplified by 0 and ¢, so a maximum entropy design is
hyperparameter dependent.

» This creates a chicken-or-egg problem because we hope to
use data, which we’ve not yet observed since we’re still
designing the experiment, to learn hyperparameter settings.

> We’ll see shortly that the choice of lengthscale 8 can have a
substantial impact on maximum entropy designs. The role
of the nugget ¢ is more nuanced.

» For now assume 6 and g are known.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
0000000 e000000 0000000000000 00000 0000000 000000

How to Code it?

Our stochastic exchange mymazimin implementation (4.2.1) may
easily be altered to optimize |K,|. Note that the code uses log|K,|
for greater numerical stability, assumes a separable Gaussian family
kernel, but allows the user to tweak default settings of its
hyperparameterization.

library(plgp)
maxent <- function(n, m, theta=0.1, g=0.01, T=100000) {
if (length(theta) == 1) theta <- rep(theta, m)

X <- matrix(runif (n*m), ncol=m)
K <- covar.sep(X, d=theta, g=g)
ldetK <- determinant(K, logarithm=TRUE)$modulus

for(t in 1:T) {
row <- sample(l:n, 1)
xold <- X[row,]
X[row,] <- runif (m)
Kprime <- covar.sep(X, d=theta, g=g)
ldetKprime <- determinant(Kprime, logarithm=TRUE)$modulus
if (ldetKprime > 1ldetK) { 1ldetK <- ldetKprime
} else { X[row,] <- xo0ld }
}

return(X)

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000008000 00 0000000000000 00000 0000000 000000

Some Observations

| 2

As with mymazximin this is a simple, yet inefficient
implementation from a computational perspective. Many
proposed swaps will be rejected either because the outgoing
point (xold) isn’t that bad, or because the incoming
runif(m) location is chosen too clumsily.

Rules of thumb about how to make improvements here are
harder to come by, however. One reason is that the effect
of hyperparameterization is more difficult to intuit.

Heuristics which favor swapping out points with small
Euclidean distances can indeed reduce rejections.
Derivatives can be helpful for local refinement. A

homework exercise (6.4) asks the curious reader to
entertain such enhancements.

In spite of its inefficiencies, mazxent as coded above works
well in the illustrative examples below. i

Model Based Design Predictive Uncertainty Sequential design
000000000 e0000 0000000000000 00000

Simulate 25 locations in 2-d

X <- maxent(25, 2)
plot (X, xlab="x1", ylab="x2")

ALM
0000000

ALC
000000

Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000 0e000 0000000000000 00000 0000000 000000

Similarities and differences to maximin

» One reason for the high degree of similarity between
mazent and mazimin designs is that the default maxent
hyperparameterization is isotropic (i.e., radially
symmetric), using the same j-values in each input
direction, k € 1,2. So both are using the same Fuclidean
distances under the hood.

» On the rare occasion where we prefer a Franken-kernel
(5.3.3), rather than the friendly Gaussian, we could end up
with a very interesting looking maximum entropy design.

» In a more common separable (Gaussian) setup, one might
speculate desire for more spread in some directions rather
than others through ;. Whether or not that’s a good idea
depends upon confidence in whatever evidence led to
preferring differing lengthscales before collecting any data. ;

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM
00000000000 e00 0000000000000 00000 0000000

Simulate 25 locations in 2-d: anisotropic case

X <- maxent(25, 2, theta=c(0.1, 0.5))
plot(X, xlab="x1", ylab="x2")

ALC
000000

Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 e0 0000000000000 00000 0000000 000000

Computational Complexity

» In general, model-based optimality comes at potentially
substantial computational cost. Each iteration of mazent
requires O(n?) cost. Maximin, by contrast, is only O(n?)
via pairwise distances.

» Maximin can be further improved to O(n). A similar trick
can be performed with the log determinant to get an O(n?)
implementation when proposing a change in just one
coordinate, leveraging the following decomposition.

10g |Kn| = lOg|Kn71|+10g(]-+g_C€(xna Xn71)K,;1109(Xn717 wn))
(1)
» The origin of this result - see Eq. (6.10) — will be discussed
in more detail when we get to sequential updating of GP
models later in 6.3. @

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
0000000000000 e 0000000000000 00000 0000000 000000

3d application

Before moving on, consider application in 3d.
X <- maxent(25, 3)

Is <- as.list(as.data.frame(combn(ncol(X),2)))
par (mfrow=c(1,length(Is)))
for(i in Is) {
plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n"
xlab=paste0("x", i[1]), ylab=pasteO("x", i[21))
text (X[,i], labels=1:nrow(X))
}

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

Criteria based on predictive uncertainty

As the basis of another criterion, consider predictive
uncertainty. At a particular location & € X, the predictive
variance is:

on(@) =1+ g — Ky (2) K k()]
where ky, () = k(X,,,). This is the same as what some call
mean-squared prediction error (MSPE):

MSPE[j(x)] = E{(§ — Y (x))*} = oy ().

An integrated MSPE (IMSPE) criterion is defined as MSPE
(divided by 72), averaged over the entire input region X', which
is expressed below as a function of design X,,.

o2 (x
J(Xn):/XT;_(Q)w(a:)da: .

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

How to compute the integral?

» That’s an m-dimensional integral for m-dimensional X.

» Fortunately if X is rectangular, and where covariance
kernels take on familiar forms such as isotropic or separable
Gaussian and Matern v = {3/2,5/2, ...}, closed forms are
analytically tractable, or at least nearly so (e.g., depending
on fast/accurate numerical evaluations of an error
function/standard Gaussian distribution function, say.)

» Details are left to Eq. (10.9) and 10.3.1, on heteroskedastic
(i.e., inputp-dependent noise) GPs, where the substance of
such developments is of greater value to the narrative.
Here it represents too much of a digression.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0080000000000 00000 0000000 000000

Implementation

We will, however, borrow the implementation in the supporting
hetGP package (Binois and Gramacy 2019) on CRAN. The
relevant function is called IMSPE. Since heteroskedastic GPs
involve a few more bells and whistles, the function below strips
down IMSPE’s interface somewhat so that the setup better
matches our ordinary GP setting.

library (hetGP)
imspe.criteria <- function(X, theta, g, ...)
{
IMSPE(X, theta=theta, Lambda=diag(g, nrow(X)), covtype="Gaussian",
mult=rep(1, nrow(X)), nu=1)
}

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0008000000000 00000 0000000 000000

Implementation

Now we're ready to use IMSPE in a design search. R code
below is ported from mazent (6.1.1) with modifications to
minimize rather than maximize.

imspe <- function(n, m, theta=0.1, g=0.01, T=100000, ...)

{

if (length(theta) == 1) theta <- rep(theta, m)
X <- matrix(runif (n*m), ncol=m)

I <- imspe.criteria(X, theta, g, ...)

for(t in 1:T) {
row <- sample(i:n, 1)
xo0ld <- X[row,]
X[row,] <- runif(m)
Iprime <- imspe.criteria(X, theta, g, ...)
if (Iprime < I) { I <- Iprime
} else { X[row,] <- xo0ld }
}

return(X)

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000e00000000 00000 0000000 000000

2d illustration

Let’s illustrate in 2d. The code below provides the search
X <- imspe(25, 2)

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000080000000 00000 0000000 000000

Differences to maxent or maximin

P> You can see that the resulting design is quite similar to
maxent or maximin analogs, but there’s one important
distinction: chosen sites avoid the boundary of the
input space.

» There’s an intuitive explanation for this. IMSPE considers
variance integrated over the entire input space (6.4).

» Design sites at the boundary don’t “cover” that space as
efficiently as interior ones.

» Points on a boundary in 2d cover half as much of the input
space as (deep) interior ones do.

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 000000e000000 00000 0000000 000000

Differences to maxent or maximin

Points in the corner of a 2d space, i.e., at the intersection of two
boundaries, cover one quarter of the space compared to ones in
the interior. Thus boundary locations are far less likely to be

chosen by IMSPE compared to mazent.
This effect is even more pronounced in higher input dimension.
Consider 3d.

X <- imspe(25, 3)

Is <- as.list(as.data.frame(combn(ncol(X),2)))

par (mfrow=c(1,length(Is)))

for(i in Is) {
plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n",

xlab=paste0("x", i[1]), ylab=pasteO("x", i[2]))

text(X[,i], labels=1:nrow(X))

}

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000800000 00000 0000000 000000

Differences to maxent or maximin

» Compared to the 2d version, selected sites are even more
“off the boundary”, but otherwise positioning behavior is
quite similar to maxent or maximin.

» Many practitioners find these designs to be more
aesthetically pleasing than the maxent analog.

» Points off of the boundary make sense, and the criteria
itself is easier to intuit. Desire for a design which predicts
equally well everywhere is easy to justify to non-experts.

» One downside to IMSPE, however, is that when good
predictions are desired in non-rectangular regions of the
input space, or where that space is not weighted equally.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 000000000000 00000 0000000 000000

Approximation of the Integral

> A simple approximation offers far greater flexibility, but
implies a sometimes limiting accuracy-versus-computation
trade-off.

» The idea is to replace the integral in Eq. above with a
(possibly weighted) sum over a reference grid in X,
implementing a poor-man’s quadrature.

» Reference grids need not be regular; or they could follow a
space-filling construction.

» Many variations supported by this approximation amount
to changes in the form or nature of reference grids. Grid
density is intimately linked to approximation accuracy.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM
000000000000 00 0000000008000 00000 0000000

Concretely, the idea is:

where x; ~ Unif(X), or
T

1 a%(au)
TZ -2

t=1

ALC
000000

where x; ~ W(X) and W(X) is the measure of w(x) applied in

the input domain X.

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000800 00000 0000000 000000

IMSPE approximation

To implement and illustrate this scheme, the subroutine below
calculates GP predictive variance at reference locations Xref for
design X= X,, and then approximates the integral (6.4) by a
mean over Xref. The function below re-defines our
imspe.criteria from above, and ellipses (...) allows re-use of the

1mspe searching function above under the new approximate
criterion.

imspe.criteria <- function(X, theta, g, Xref)
{
K <- covar.sep(X, d=theta, g=g)
Ki <- solve(K)
KXref <- covar.sep(X, Xref, d=theta, g=0)
return(mean(l + g - diag(t(KXref) %x*), Ki %*), KXref)))
}

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000080 00000 0000000 000000

IMSPE approximation in 2D

g <- expand.grid(seq(0,1,length=10), seq(0,1, length=10))
X <- imspe(25, 2, Xref=g)

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
points(g, pch=20, cex=0.25, col="gray")

“Cincinnati

Model Based Desig Predictive Uncertainty Sequential design ALM ALC
000000000000 00 00000000000 0e 00000 0000000 000000

IMSPE in a non-rectangular shape

Xref <- rmvnorm(100, mean=c(0.25, 0.25),
sigma=0.005*rbind(c(2, 0.35), c(0.35, 0.1)))
Xref <- rbind(Xref,
rmvnorm (100, mean=c(0.25, 0.25),
sigma=0.005%rbind(c (0.1, -0.35), c(-0.35, 2))))
X <- imspe(25, 2, Xref=Xref)

plot (X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
points(Xref, pch=20, cex=0.25, col="gray")

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000000

Sequential design/active learning

Figure 29 summarizes a sequential design setup. Although there
are variations, here I shall emphasize the simple setup of
augmenting an initial design by one, repeated until a desired
size is reached.

) — () — (B
(z,Y(2))

Figure: Diagram of sequential design/active learning/design
augmentation.

n+<n+1

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 0e000 0000000 000000

Sequential design/active learning

To supplement that cartoon, consider Algorithm 6.1. The
development here is a little backwards, saying what the
algorithm is before delving into its key components, in
particular Step 3 where a criterion is optimized to choose the
next design element. Figure 6.8 is suggestive of indefinite
updating, augmenting a design by one in each pass through the
circuit. Algorithm 6.1 assumes a fixed total design size N,
iterating in n = ng, ..., N, starting from a small seed design of
size ny.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00e00 0000000 000000

Sequential design/active learning

Assume a flexible surrogate, e.g., a GP model, but with
potentially unknown hyperparameterization.

Require a function f(-) providing outputs y = f(x) for inputs
x, either deterministic or observed with noise; a choice of initial
design size ng and final size N; and criterion J(x) to search for
design augmentation.

Then: Run a small seed, or bootstrapping experiment.

(a) Create an initial seed design X, with ng runs. Typically
Xy, is a model-free choice, e.g., derived from a static LHS
or maximin design.
(b) Evaluate y; = f(x;) under each a:f in the " row of Xnos
for i =1,...,n0, obtaining D,, = (Xp,, Yn,)-
(¢) Set m +— ng, indexing iterations of sequential design.
@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00080 0000000 000000

Sequential design/active learning

1. Fit the surrogate (and hyperparameters) using D,,, e.g.,
via MLE.

2. Solve criterion J(x) based on the fitted model from Step 2,
resulting in a choice of x,,41|D,, via
Tpt1 = argmazgexJ(x)|Dy,.

3. Observe the response at the chosen location by running a
new simulation, yn+1 = f(Tnt1).

4. Update Dy 11 = Dy (®n41,Yn+1); set n <— n+ 1 and
repeat from Step 1 unless n = N.

Return the chosen design and function evaluations Dy, along
with surrogate fit (i.e., after a final application of Step 2).

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 [e]e]ele]] 0000000 000000

Some observations/ Efficient computations

» Numerical optimization of the likelihood to infer
hyperparameters can require initial values.

» Random initialization is common when n is small, e.g.,
n = ng. Initializing with hyperparameters found in earlier
iterations of sequential design — a warm start — offers
computationally favorable results (faster convergence) and
negligible deleterious effects when n is large.

» Earlier on, periodic random reinitialization can confer a
certain robustness in the face of multimodal likelihoods
(5.3.4), which are not an uncommon occurrence.

» Skipping expensive O(n?) calculations in Step 1, e.g., using
MLE calculations from earlier n, is risky but could

represent a huge computational savings: taking flops in

O(n?) down to O(n?). @

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00000000000000 0000000000000 00000 ©000000 000000

Active Learning MacKay (ALM)

» The simplest sequential design scheme for GPs, but it’s of
course more widely applicable, involves choosing the next
point to maximize predictive variance.

» Given data D,, = (X,,Y,), infer unknown
hyperparameters (72,6, g) by maximizing the likelihood,
say, and choose x 1 as

2
oty = argmax oy, (@).

» Obtain y,+1 = Y(®nt1) = f(Tnt1) + € combine to form
the new dataset: Dy, 11 = ([Xn; @nt1], [Yn; Ynt1]); repeat.
» In other words, the criterion provided to Algorithm 6.1 is
J(z)|D,, = o%(x), where o2(x) comes from kriging
equations (5.3 book) applied using (72, 02, Jn) trained on
data compiled from earlier sequential design iterations:
D, =(X,,Y,). _
» The n in the subscript is included to remind readers that o

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00000000000000 0000000000000 00000 0®00000 000000

ALM in practice

To demonstrate ALM, let’s revisit our favorite 2d dataset from
5.1.2, seeding with a small LHS of size ng = 12. The code chunk
below implements Step 1 of Algorithm 6.1 with this choice of

fE)-

library(lhs)
ninit <- 12
X <- randomLHS(ninit, 2)
f <- function(X, sd=0.01)
{
X[,1]1 <= (X[,1] - 0.5)*6 + 1
X[,2] <= (X[,2] - 0.5)*6 + 1
y <= X[,1] * exp(-X[,1]1°2 - X[,2]"2) + rnorm(nrow(X), sd=sd)
}
y <= £(X)

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00000000000000 0000000000000 00000 00@0000 000000

ALM in practice

Step 2 involves fitting a model. Below, an isotropic GP is fit
using laGP library routines.

library(1aGP)

g <- garg(list(mle=TRUE, max=1), y)

d <- darg(list(mle=TRUE, max=0.25), X)

gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)

mle <- jmleGP(gpi, c(dmin, dmax), c(gmin, gmax), dab, gab)

x1 <- x2 <- seq(0, 1, length=100)

XX <- expand.grid(xl, x2)

yytrue <- f(XX, sd=0)

rmse <- sqrt(mean((yytrue - predGP(gpi, XX, lite=TRUE)$mean)"2))

obj.alm <- function(x, gpi)
- sqrt(predGP(gpi, matrix(x, nrow=1), lite=TRUE)$s2)

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00000000000000 0000000000000 00000 000®000 000000

Problem with Local Minima

» Predictive variance o2 () produces

football /sausage-shaped error-bars, so it must have many
local maxima. In fact, it’s easy to see how the number of
local maxima could grow linearly in n.

» Optimizing globally over that surface presents challenges.
Global optimization is a hard sequential design problem in
its own right, hence Chapter 7.

» Here we shall stick to our favorite library-based local
solver, optim with method="1-BFGS-B” (Byrd et al.
1995). Code below establishes the ALM objective as minus
predictive variance, with the intention of passing to optim
whose default is to search for minima.

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM
000000000000 00 0000000000000 00000 0000e00

ALM search

xnpl.search <- function(X, gpi, obj=obj.alm, ...)
{
start <- mymaximin(nrow(X), 2, T=100*nrow(X), Xorig=X)
xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X) + 1)
for(i in 1:nrow(start)) {
out <- optim(start[i,], obj, method="L-BFGS-B", lower=0,
upper=1, gpi=gpi, ...)
xnew([i,] <- c(out$par, -out$value)

}

solns <- data.frame(cbind(start, xnew))

names (solns) <- c("s1", "s2", "xi", "x2", "val")
return(solns)

ALC
000000

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
00000000000000 0000000000000 00000 0000080 000000

Talking about the output

» On output, a data.frame is returned combining starting
and ending locations with a final column recording the
value of the objective found by optim.

» Such comprehensive output is probably overkill for most
situations, because all that matters is ¢(x1, x2) coordinates
in the row having the smallest val.

» Other rows are furnished primarily to aid in illustration.
For example, Figure below draws arrows connecting
starting c(s1, s2) coordinates to locally optimal
variance-maximizing solutions, with a red dot at the
terminus of the best val arrow. (Any arrows with near-zero
length are omitted, and occasionally such an arrow
“terminates” at the red dot.)

@

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
0000000000000 0 0000000000000 00000 000000e 000000

ALM search 2D

solns <- xnpl.search(X, gpi)

plot (X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$sl, solns$s2, solns$xl, solns$x2, length=0.1)
m <- which.max(solns$val)

prog <- solns$val [m]

points(solns$x1[m], solns$x2[m], col=2, pch=20)

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 00000

A different approach: ALC

>
>

You could say that ALM has somewhat of a scale problem.
Just because predictive variance is high doesn’t mean that
there’s value in adding more data.

One could instead work with epistemic variance (5.16), i.e.,
the variance of the latent field (5.3.2), or variance of the
mean.

Operationally speaking, this amounts to using a zero
nugget when calculating out-of-sample covariances among
X = XX

A better metric might: how helpful is a potential new
design site at reducing predictive uncertainty?

If a lot, relative to previous reductions and relative to other
new design sites, then it could be quite helpful to perform
a new run at that location. If not, perhaps another
location would be preferred or perhaps we have enough
data already. o

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 Oe0000

ALC idea

» But this begs the question where; where should the reduction be
measured? One option is everywhere, integrating over the entire
input space like IMSPE does for global design. Such an integral
is tractable analytically for rectangular input spaces, but I shall
defer that discussion to Chapter 10.

» At the other extreme is measuring reduction in variance at a
particular reference location, or at a collection of locations,
thereby approximating the integral with a sum like we did with
IMSPE (6.5).

» The first person to suggest such an acquisition heuristic in a
nonparametric regression context was Cohn (1994), for neural
networks. As with ALM, Seo et al. (2000) adapted Cohn’s idea
to GPs and called it active learning Cohn (ALC).

» The result is essentially a sequential analog of IMSPE design,
and in fact the sequential version can be shown to approximate a
full A-optimal design. .

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 [e]e] lele]e]

Criteria using IMSPE

Recall that predictive variance follows
o (@) = T3 [1+ Gn — Ky (2) K, en ()]

where k,(x) = C4(X,,). Written here with an n subscript on all
estimated quantities in order to emphasize their dependence on data
D, = (X,,Y,) via 72, §,, and 6,, hidden inside K. Let 62, (x)
denote the deduced variance based on design X, 1 combining X,
and a new input location &, 41 residing in its n + 1st row. Otherwise,

52, 1(z) conditions on the same estimated quantities as o2 (), i.e.,

72, Gn, and én, all estimated from Y,,. Since Y,, doesn’t directly
appear in o2 (), nor would it directly appear in 62, (x). Therefore,
quite simply

572L+1(3’3) = A’?L—‘rl[]‘ + gnt1 — k77;+1(m)K;ilkn+l(m)]

where ky1(x) = Cy(Xy, x).

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 000e00

ALC

Using that definition, the ALC criteria is the average (integrated over
X or any other subset of the input space) reduction in variance from
n—n+1 measured through a choice of x, 1, augmenting the design:

Ao? () = / o2 (z) — 62, (x)de = ¢ - / 52, () da.

xT xT
Wishing predictive uncertainty to be reduced as much as possible,
that translates into finding an @, 41 maximizing Ao2_ | (,+1). But
that’s the same as minimizing the integrated deduced variance.
Therefore the criterion that must be solved in each iteration of
sequential design, occupying Step 3 of Algorithm 6.1, is

. ~2
T, = arg min G (x)dx
zEX Jpex

A closed form for rectangular X', complete with derivatives for
maximizing, is provided later in Chapter 10.

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 0O000e0

ALC search 2D

obj.alc <- function(x, gpi, Xref)
- sqrt(alcGP(gpi, matrix(x, nrow=1), Xref))

####

deleteGP(gpi)

X <- X[1:ninit,]

y <= y[1:ninit]

g <- garg(list(mle=TRUE, max=1), y)

d <- darg(list(mle=TRUE, max=0.25), X)

gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)

mle <- jmleGP(gpi, c(dmin, dmax), c(gmin, gmax), dab, gab)
p <- predGP(gpi, XX, lite=TRUE)

rmse.alc <- sqrt(mean((yytrue - p$mean) 2))

“Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC
000000000000 00 0000000000000 00000 0000000 O0000e

ALC search 2D Cont.

Xref <- randomLHS(100, 2)
solns <- xnpl.search(X, gpi, obj=obj.alc, Xref=Xref)
m <- which.max(solns$val)
xnew <- as.matrix(solns[m, 3:4])
prog.alc <- solns$val[m]

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$sl, solns$s2, solns$xl, solns$x2, length=0.1)
points(solns$x1[m], solns$x2[m], col=2, pch=20)
points(Xref, cex=0.25, pch=20, col="gray")

“Cincinnati

	Model Based Design
	Predictive Uncertainty
	Sequential design
	ALM
	ALC

