
Model Based Design Predictive Uncertainty Sequential design ALM ALC

Surrogates 7020
Chapter 6: Model-based Design for GPs

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Model Based Design

▶ A model-based design is one where the model says what Xn it wants
according to a criterion targeting some aspect of its fit.

▶ Example targets include the quality of estimates for parameters or
hyperparameters, or accuracy of predictions at particular inputs
out-of-sample, or over the entire input space.

▶ With a first-order linear model, you may recall from an elementary
design course that maximizing spread in Xn maximizes leverage and
therefore minimizes the standard error of β̂-values.

▶ An optimal design for learning regression coefficients places inputs at
the corners of the experimental region, for better or worse.

▶ Linear models are highly parametric. Parameter settings are
intimately linked to the underlying predictor.

▶ With GPs, a nonparametric model whose hyperparameterization is
only loosely connected to the predictive distribution, you might think
a different strategy is required. But principles are largely the same.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Model Based Design

The general program is to specify a criterion J(Xn), and
optimize that criterion with respect to Xn

. Assuming maximization,

X∗
n = argmax

Xn

J(Xn),

which is typically solved numerically. Except when essential for
clarity, I shall generally drop the ∗ superscript in X∗

n, indicating
an optimally chosen design.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Maximum Entropy Design

The entropy of a density p(x) is defined as

H(X) = −
∫
X
p(x) log p(x)dx.

Entropy is larger when p(x) is more uniform. You can think of
it as a measure of surprise in random draws from the
distribution corresponding to p. A uniform draw always yields a
surprising, unpredictable, random value. Entropy is maximized
for this choice of p. At the other end of the spectrum, a
point-spike p, where all density is concentrated on a single
point, offers no surprise. A draw from such a distribution yields
the same value every time. Its entropy is zero.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

AA

Information is the negative of entropy, I = −H. More
information is less uniformity, less surprise. To see how
information and entropy can relate to design, consider the
following. Suppose X is a fixed, finite set of points in the input
space. Place latent functions F at X under a GP prior p(F |X);
see 5.3.2. Let IX denote the information of that prior. Now,
denote F restricted to X ⊂ X as FX with implied prior
p(FX |X) and information IX . For a particular choice Xn ⊂ X ,
we have that

IX = IXn + E(FXn{IX−Xn|Dn
},

where Dn = (Xn, Yn) is the completion of Xn with a
noise-augmented Fn.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Information partitioned

IX = IXn + E(FXn{IX−Xn|Dn
},

This equation in fact partitions information between the
amount soaked up, and amount left over after selecting Xn.
Choosing Xn to maximize the expected information in
prediction of latent function values, i.e., the amount soaked up
by second term, is equivalent to minimizing the information IXn

left over (maximizing entropy, HXn) in the distribution of FXn .
A solution to that optimization problem is a so-called maximum
entropy (or maxent) design. For more details see Shewry and
Wynn (1987), who introduced the concept as a design criterion
for spatial models. Maxent was appropriated for computer
experiments by Currin et al. (1991) and TJ Mitchell and Scott
(1987).

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Maximizing the Entropy in Practice

That distribution – either for FXn or it’s noisy analog for
Dn = (Xn,Yn), depending on your preferred interpretation
(5.3.2) – ultimately involves:

Yn ∼ Nn(0, τ
2Kn)

with Kij
n = Cθ(xi, xj) + gδij . MVN conditionals yield the

posterior predictive Y (x)|Dn . One can show that the
entropy of that distribution, for Yn observed at Xn, is
maximized when |Kn| is maximized. For a complete
derivation, see Section 6.2.1 of Santner, Williams, and Notz
(2018). Recall that Kn depends on design Xn, usually through
inverse exponentiation pairwise squared distances.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

One obstacle

▶ Kn and thus |Kn| also depend on hyperparameters,
exemplified by θ and g, so a maximum entropy design is
hyperparameter dependent.

▶ This creates a chicken-or-egg problem because we hope to
use data, which we’ve not yet observed since we’re still
designing the experiment, to learn hyperparameter settings.

▶ We’ll see shortly that the choice of lengthscale θ can have a
substantial impact on maximum entropy designs. The role
of the nugget g is more nuanced.

▶ For now assume θ and g are known.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

How to Code it?

Our stochastic exchange mymaximin implementation (4.2.1) may
easily be altered to optimize |Kn|. Note that the code uses log |Kn|
for greater numerical stability, assumes a separable Gaussian family
kernel, but allows the user to tweak default settings of its
hyperparameterization.

library(plgp)

maxent <- function(n, m, theta=0.1, g=0.01, T=100000) {

if(length(theta) == 1) theta <- rep(theta, m)

X <- matrix(runif(n*m), ncol=m)

K <- covar.sep(X, d=theta, g=g)

ldetK <- determinant(K, logarithm=TRUE)$modulus

for(t in 1:T) {

row <- sample(1:n, 1)

xold <- X[row,]

X[row,] <- runif(m)

Kprime <- covar.sep(X, d=theta, g=g)

ldetKprime <- determinant(Kprime, logarithm=TRUE)$modulus

if(ldetKprime > ldetK) { ldetK <- ldetKprime

} else { X[row,] <- xold }

}

return(X)

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Some Observations

▶ As with mymaximin this is a simple, yet inefficient
implementation from a computational perspective. Many
proposed swaps will be rejected either because the outgoing
point (xold) isn’t that bad, or because the incoming
runif(m) location is chosen too clumsily.

▶ Rules of thumb about how to make improvements here are
harder to come by, however. One reason is that the effect
of hyperparameterization is more difficult to intuit.

▶ Heuristics which favor swapping out points with small
Euclidean distances can indeed reduce rejections.

▶ Derivatives can be helpful for local refinement. A
homework exercise (6.4) asks the curious reader to
entertain such enhancements.

▶ In spite of its inefficiencies, maxent as coded above works
well in the illustrative examples below.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Simulate 25 locations in 2-d

X <- maxent(25, 2)

plot(X, xlab="x1", ylab="x2")

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Similarities and differences to maximin

▶ One reason for the high degree of similarity between
maxent and maximin designs is that the default maxent
hyperparameterization is isotropic (i.e., radially
symmetric), using the same θk-values in each input
direction, k ∈ 1, 2. So both are using the same Euclidean
distances under the hood.

▶ On the rare occasion where we prefer a Franken-kernel
(5.3.3), rather than the friendly Gaussian, we could end up
with a very interesting looking maximum entropy design.

▶ In a more common separable (Gaussian) setup, one might
speculate desire for more spread in some directions rather
than others through θk. Whether or not that’s a good idea
depends upon confidence in whatever evidence led to
preferring differing lengthscales before collecting any data.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Simulate 25 locations in 2-d: anisotropic case

X <- maxent(25, 2, theta=c(0.1, 0.5))

plot(X, xlab="x1", ylab="x2")

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Computational Complexity

▶ In general, model-based optimality comes at potentially
substantial computational cost. Each iteration of maxent
requires O(n3) cost. Maximin, by contrast, is only O(n2)
via pairwise distances.

▶ Maximin can be further improved to O(n). A similar trick
can be performed with the log determinant to get an O(n2)
implementation when proposing a change in just one
coordinate, leveraging the following decomposition.

log |Kn| = log|Kn−1|+log(1+g−Cθ(xn,Xn−1)K
−1
n−1Cθ(Xn−1,xn))

(1)

▶ The origin of this result - see Eq. (6.10) – will be discussed
in more detail when we get to sequential updating of GP
models later in 6.3.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

3d application

Before moving on, consider application in 3d.

X <- maxent(25, 3)

Is <- as.list(as.data.frame(combn(ncol(X),2)))

par(mfrow=c(1,length(Is)))

for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n",

xlab=paste0("x", i[1]), ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X))

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Criteria based on predictive uncertainty

As the basis of another criterion, consider predictive
uncertainty. At a particular location x ∈ X , the predictive
variance is:

σ2
n(x) = τ2[1 + g − kT

n (x)K
−1
n kn(x)]

where kn(x) = k(Xn,x). This is the same as what some call
mean-squared prediction error (MSPE):

MSPE[ŷ(x)] = E{(ŷ − Y (x))2} = σ2
n(x).

An integrated MSPE (IMSPE) criterion is defined as MSPE
(divided by τ2), averaged over the entire input region X , which
is expressed below as a function of design Xn.

J(Xn) =

∫
X

σ2
n(x)

τ2
w(x)dx

Model Based Design Predictive Uncertainty Sequential design ALM ALC

How to compute the integral?

▶ That’s an m-dimensional integral for m-dimensional X .
▶ Fortunately if X is rectangular, and where covariance

kernels take on familiar forms such as isotropic or separable
Gaussian and Matern ν = {3/2, 5/2, . . . }, closed forms are
analytically tractable, or at least nearly so (e.g., depending
on fast/accurate numerical evaluations of an error
function/standard Gaussian distribution function, say.)

▶ Details are left to Eq. (10.9) and 10.3.1, on heteroskedastic
(i.e., inputp-dependent noise) GPs, where the substance of
such developments is of greater value to the narrative.
Here it represents too much of a digression.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Implementation

We will, however, borrow the implementation in the supporting
hetGP package (Binois and Gramacy 2019) on CRAN. The
relevant function is called IMSPE. Since heteroskedastic GPs
involve a few more bells and whistles, the function below strips
down IMSPE’s interface somewhat so that the setup better
matches our ordinary GP setting.

library(hetGP)

imspe.criteria <- function(X, theta, g, ...)

{

IMSPE(X, theta=theta, Lambda=diag(g, nrow(X)), covtype="Gaussian",

mult=rep(1, nrow(X)), nu=1)

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Implementation

Now we’re ready to use IMSPE in a design search. R code
below is ported from maxent (6.1.1) with modifications to
minimize rather than maximize.

imspe <- function(n, m, theta=0.1, g=0.01, T=100000, ...)

{

if(length(theta) == 1) theta <- rep(theta, m)

X <- matrix(runif(n*m), ncol=m)

I <- imspe.criteria(X, theta, g, ...)

for(t in 1:T) {

row <- sample(1:n, 1)

xold <- X[row,]

X[row,] <- runif(m)

Iprime <- imspe.criteria(X, theta, g, ...)

if(Iprime < I) { I <- Iprime

} else { X[row,] <- xold }

}

return(X)

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

2d illustration

Let’s illustrate in 2d. The code below provides the search

X <- imspe(25, 2)

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Differences to maxent or maximin

▶ You can see that the resulting design is quite similar to
maxent or maximin analogs, but there’s one important
distinction: chosen sites avoid the boundary of the
input space.

▶ There’s an intuitive explanation for this. IMSPE considers
variance integrated over the entire input space (6.4).

▶ Design sites at the boundary don’t “cover” that space as
efficiently as interior ones.

▶ Points on a boundary in 2d cover half as much of the input
space as (deep) interior ones do.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Differences to maxent or maximin

Points in the corner of a 2d space, i.e., at the intersection of two
boundaries, cover one quarter of the space compared to ones in
the interior. Thus boundary locations are far less likely to be
chosen by IMSPE compared to maxent.
This effect is even more pronounced in higher input dimension.
Consider 3d.

X <- imspe(25, 3)

Is <- as.list(as.data.frame(combn(ncol(X),2)))

par(mfrow=c(1,length(Is)))

for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n",

xlab=paste0("x", i[1]), ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X))

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Differences to maxent or maximin

▶ Compared to the 2d version, selected sites are even more
“off the boundary”, but otherwise positioning behavior is
quite similar to maxent or maximin.

▶ Many practitioners find these designs to be more
aesthetically pleasing than the maxent analog.

▶ Points off of the boundary make sense, and the criteria
itself is easier to intuit. Desire for a design which predicts
equally well everywhere is easy to justify to non-experts.

▶ One downside to IMSPE, however, is that when good
predictions are desired in non-rectangular regions of the
input space, or where that space is not weighted equally.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Approximation of the Integral

▶ A simple approximation offers far greater flexibility, but
implies a sometimes limiting accuracy-versus-computation
trade-off.

▶ The idea is to replace the integral in Eq. above with a
(possibly weighted) sum over a reference grid in X ,
implementing a poor-man’s quadrature.

▶ Reference grids need not be regular; or they could follow a
space-filling construction.

▶ Many variations supported by this approximation amount
to changes in the form or nature of reference grids. Grid
density is intimately linked to approximation accuracy.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Concretely, the idea is:

J(Xn) =

∫
X

σ2
n(x)

τ2
w(x)dx ≈ 1

T

T∑
t=1

σ2
n(xt)

τ2
w(xt)

where xt ∼ Unif(X), or

1

T

T∑
t=1

σ2
n(xt)

τ2

where xt ∼ W(X) and W(X) is the measure of w(x) applied in
the input domain X .

Model Based Design Predictive Uncertainty Sequential design ALM ALC

IMSPE approximation

To implement and illustrate this scheme, the subroutine below
calculates GP predictive variance at reference locations Xref for
design X= Xn and then approximates the integral (6.4) by a
mean over Xref. The function below re-defines our
imspe.criteria from above, and ellipses (...) allows re-use of the
imspe searching function above under the new approximate
criterion.

imspe.criteria <- function(X, theta, g, Xref)

{

K <- covar.sep(X, d=theta, g=g)

Ki <- solve(K)

KXref <- covar.sep(X, Xref, d=theta, g=0)

return(mean(1 + g - diag(t(KXref) %*% Ki %*% KXref)))

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

IMSPE approximation in 2D

g <- expand.grid(seq(0,1,length=10), seq(0,1, length=10))

X <- imspe(25, 2, Xref=g)

################################

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

points(g, pch=20, cex=0.25, col="gray")

Model Based Design Predictive Uncertainty Sequential design ALM ALC

IMSPE in a non-rectangular shape

Xref <- rmvnorm(100, mean=c(0.25, 0.25),

sigma=0.005*rbind(c(2, 0.35), c(0.35, 0.1)))

Xref <- rbind(Xref,

rmvnorm(100, mean=c(0.25, 0.25),

sigma=0.005*rbind(c(0.1, -0.35), c(-0.35, 2))))

X <- imspe(25, 2, Xref=Xref)

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

points(Xref, pch=20, cex=0.25, col="gray")

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Sequential design/active learning

Figure 29 summarizes a sequential design setup. Although there
are variations, here I shall emphasize the simple setup of
augmenting an initial design by one, repeated until a desired
size is reached.

Figure: Diagram of sequential design/active learning/design
augmentation.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Sequential design/active learning

To supplement that cartoon, consider Algorithm 6.1. The
development here is a little backwards, saying what the
algorithm is before delving into its key components, in
particular Step 3 where a criterion is optimized to choose the
next design element. Figure 6.8 is suggestive of indefinite
updating, augmenting a design by one in each pass through the
circuit. Algorithm 6.1 assumes a fixed total design size N,
iterating in n = n0, . . . , N , starting from a small seed design of
size n0.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Sequential design/active learning

Assume a flexible surrogate, e.g., a GP model, but with
potentially unknown hyperparameterization.
Require a function f(·) providing outputs y = f(x) for inputs
x, either deterministic or observed with noise; a choice of initial
design size n0 and final size N; and criterion J(x) to search for
design augmentation.
Then: Run a small seed, or bootstrapping experiment.

(a) Create an initial seed design Xn0 with n0 runs. Typically
Xn0 is a model-free choice, e.g., derived from a static LHS
or maximin design.

(b) Evaluate yi = f(xi) under each xTi in the ith row of Xn0 ,
for i = 1, . . . , n0, obtaining Dn0 = (Xn0 , Yn0).

(c) Set n←− n0, indexing iterations of sequential design.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Sequential design/active learning

1. Fit the surrogate (and hyperparameters) using Dn, e.g.,
via MLE.

2. Solve criterion J(x) based on the fitted model from Step 2,
resulting in a choice of xn+1|Dn via
xn+1 = argmaxx∈XJ(x)|Dn.

3. Observe the response at the chosen location by running a
new simulation, yn+1 = f(xn+1).

4. Update Dn+1 = Dn(xn+1, yn+1); set n←− n+ 1 and
repeat from Step 1 unless n = N .

Return the chosen design and function evaluations DN , along
with surrogate fit (i.e., after a final application of Step 2).

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Some observations/ Efficient computations

▶ Numerical optimization of the likelihood to infer
hyperparameters can require initial values.

▶ Random initialization is common when n is small, e.g.,
n = n0. Initializing with hyperparameters found in earlier
iterations of sequential design – a warm start – offers
computationally favorable results (faster convergence) and
negligible deleterious effects when n is large.

▶ Earlier on, periodic random reinitialization can confer a
certain robustness in the face of multimodal likelihoods
(5.3.4), which are not an uncommon occurrence.

▶ Skipping expensive O(n3) calculations in Step 1, e.g., using
MLE calculations from earlier n, is risky but could
represent a huge computational savings: taking flops in
O(n3) down to O(n2).

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Active Learning MacKay (ALM)

▶ The simplest sequential design scheme for GPs, but it’s of
course more widely applicable, involves choosing the next
point to maximize predictive variance.

▶ Given data Dn = (Xn,Yn), infer unknown
hyperparameters (τ2, θ, g) by maximizing the likelihood,
say, and choose xn+1 as

xn+1 = argmax
x∈X

σ2
n(x).

▶ Obtain yn+1 = Y (xn+1) = f(xn+1) + ϵ; combine to form
the new dataset: Dn+1 = ([Xn;xn+1], [Yn; yn+1]); repeat.

▶ In other words, the criterion provided to Algorithm 6.1 is
J(x)|Dn ≡ σ2

n(x), where σ2
n(x) comes from kriging

equations (5.3 book) applied using (τ̂2n, θ̂
2
n, ĝn) trained on

data compiled from earlier sequential design iterations:
Dn = (Xn,Yn).

▶ The n in the subscript is included to remind readers that
the estimator is trained on data Dn.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALM in practice

To demonstrate ALM, let’s revisit our favorite 2d dataset from
5.1.2, seeding with a small LHS of size n0 = 12. The code chunk
below implements Step 1 of Algorithm 6.1 with this choice of
f(·).

library(lhs)

ninit <- 12

X <- randomLHS(ninit, 2)

f <- function(X, sd=0.01)

{

X[,1] <- (X[,1] - 0.5)*6 + 1

X[,2] <- (X[,2] - 0.5)*6 + 1

y <- X[,1] * exp(-X[,1]^2 - X[,2]^2) + rnorm(nrow(X), sd=sd)

}

y <- f(X)

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALM in practice

Step 2 involves fitting a model. Below, an isotropic GP is fit
using laGP library routines.

library(laGP)

g <- garg(list(mle=TRUE, max=1), y)

d <- darg(list(mle=TRUE, max=0.25), X)

gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)

mle <- jmleGP(gpi, c(dmin, dmax), c(gmin, gmax), dab, gab)

x1 <- x2 <- seq(0, 1, length=100)

XX <- expand.grid(x1, x2)

yytrue <- f(XX, sd=0)

rmse <- sqrt(mean((yytrue - predGP(gpi, XX, lite=TRUE)$mean)^2))

obj.alm <- function(x, gpi)

- sqrt(predGP(gpi, matrix(x, nrow=1), lite=TRUE)$s2)

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Problem with Local Minima

▶ Predictive variance σ2
n(x) produces

football/sausage-shaped error-bars, so it must have many
local maxima. In fact, it’s easy to see how the number of
local maxima could grow linearly in n.

▶ Optimizing globally over that surface presents challenges.
Global optimization is a hard sequential design problem in
its own right, hence Chapter 7.

▶ Here we shall stick to our favorite library-based local
solver, optim with method=”L-BFGS-B” (Byrd et al.
1995). Code below establishes the ALM objective as minus
predictive variance, with the intention of passing to optim
whose default is to search for minima.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALM search

xnp1.search <- function(X, gpi, obj=obj.alm, ...)

{

start <- mymaximin(nrow(X), 2, T=100*nrow(X), Xorig=X)

xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X) + 1)

for(i in 1:nrow(start)) {

out <- optim(start[i,], obj, method="L-BFGS-B", lower=0,

upper=1, gpi=gpi, ...)

xnew[i,] <- c(out$par, -out$value)

}

solns <- data.frame(cbind(start, xnew))

names(solns) <- c("s1", "s2", "x1", "x2", "val")

return(solns)

}

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Talking about the output

▶ On output, a data.frame is returned combining starting
and ending locations with a final column recording the
value of the objective found by optim.

▶ Such comprehensive output is probably overkill for most
situations, because all that matters is c(x1, x2) coordinates
in the row having the smallest val.

▶ Other rows are furnished primarily to aid in illustration.
For example, Figure below draws arrows connecting
starting c(s1, s2) coordinates to locally optimal
variance-maximizing solutions, with a red dot at the
terminus of the best val arrow. (Any arrows with near-zero
length are omitted, and occasionally such an arrow
“terminates” at the red dot.)

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALM search 2D

solns <- xnp1.search(X, gpi)

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

m <- which.max(solns$val)

prog <- solns$val[m]

points(solns$x1[m], solns$x2[m], col=2, pch=20)

Model Based Design Predictive Uncertainty Sequential design ALM ALC

A different approach: ALC

▶ You could say that ALM has somewhat of a scale problem.
▶ Just because predictive variance is high doesn’t mean that

there’s value in adding more data.
▶ One could instead work with epistemic variance (5.16), i.e.,

the variance of the latent field (5.3.2), or variance of the
mean.

▶ Operationally speaking, this amounts to using a zero
nugget when calculating out-of-sample covariances among
X = XX.

▶ A better metric might: how helpful is a potential new
design site at reducing predictive uncertainty?

▶ If a lot, relative to previous reductions and relative to other
new design sites, then it could be quite helpful to perform
a new run at that location. If not, perhaps another
location would be preferred or perhaps we have enough
data already.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALC idea

▶ But this begs the question where; where should the reduction be
measured? One option is everywhere, integrating over the entire
input space like IMSPE does for global design. Such an integral
is tractable analytically for rectangular input spaces, but I shall
defer that discussion to Chapter 10.

▶ At the other extreme is measuring reduction in variance at a
particular reference location, or at a collection of locations,
thereby approximating the integral with a sum like we did with
IMSPE (6.5).

▶ The first person to suggest such an acquisition heuristic in a
nonparametric regression context was Cohn (1994), for neural
networks. As with ALM, Seo et al. (2000) adapted Cohn’s idea
to GPs and called it active learning Cohn (ALC).

▶ The result is essentially a sequential analog of IMSPE design,
and in fact the sequential version can be shown to approximate a
full A-optimal design.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

Criteria using IMSPE

Recall that predictive variance follows

σ2
n(x) = τ̂2n[1 + ĝn − kT

n (x)K
−1
n kn(x)]

where kn(x) = Cθ̂(Xn,x). Written here with an n subscript on all
estimated quantities in order to emphasize their dependence on data
Dn = (Xn,Yn) via τ̂2n, ĝn, and θ̂n hidden inside Kn. Let σ̃

2
n+1(x)

denote the deduced variance based on design Xn+1 combining Xn

and a new input location xn+1 residing in its n+ 1st row. Otherwise,
σ̃2
n+1(x) conditions on the same estimated quantities as σ2

n(x), i.e.,

τ̂2n, ĝn, and θ̂n, all estimated from Yn. Since Yn doesn’t directly
appear in σ2

n(x), nor would it directly appear in σ̃2
n+1(x). Therefore,

quite simply

σ̃2
n+1(x) = τ̂2n+1[1 + ĝn+1 − kT

n+1(x)K
−1
n+1kn+1(x)]

where kn+1(x) = Cθ̂(Xn,x).

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALC

Using that definition, the ALC criteria is the average (integrated over
X or any other subset of the input space) reduction in variance from
n�n+1 measured through a choice of xn+1, augmenting the design:

∆σ2
n+1(xn+1) =

∫
x

σ2
n(x)− σ̃2

n+1(x)dx = c−
∫
x

σ̃2
n+1(x)dx.

Wishing predictive uncertainty to be reduced as much as possible,
that translates into finding an xn+1 maximizing ∆σ2

n+1(xn+1). But
that’s the same as minimizing the integrated deduced variance.
Therefore the criterion that must be solved in each iteration of
sequential design, occupying Step 3 of Algorithm 6.1, is

xn+1 = arg min
x∈X

∫
x∈X

σ̃2
n+1(x)dx

A closed form for rectangular X , complete with derivatives for

maximizing, is provided later in Chapter 10.

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALC search 2D

obj.alc <- function(x, gpi, Xref)

- sqrt(alcGP(gpi, matrix(x, nrow=1), Xref))

####

deleteGP(gpi)

X <- X[1:ninit,]

y <- y[1:ninit]

g <- garg(list(mle=TRUE, max=1), y)

d <- darg(list(mle=TRUE, max=0.25), X)

gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)

mle <- jmleGP(gpi, c(dmin, dmax), c(gmin, gmax), dab, gab)

p <- predGP(gpi, XX, lite=TRUE)

rmse.alc <- sqrt(mean((yytrue - p$mean)^2))

Model Based Design Predictive Uncertainty Sequential design ALM ALC

ALC search 2D Cont.

Xref <- randomLHS(100, 2)

solns <- xnp1.search(X, gpi, obj=obj.alc, Xref=Xref)

m <- which.max(solns$val)

xnew <- as.matrix(solns[m, 3:4])

prog.alc <- solns$val[m]

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

points(solns$x1[m], solns$x2[m], col=2, pch=20)

points(Xref, cex=0.25, pch=20, col="gray")

	Model Based Design
	Predictive Uncertainty
	Sequential design
	ALM
	ALC

