
Optimization Expected Improvement Classic EI illustration EI on our running example

Surrogates 7020
Chapter 7: Bayesian Optimization

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Optimization Expected Improvement Classic EI illustration EI on our running example

Model Based Design

I In this chapter, the goal is to demonstrate how Gaussian
process (GP) surrogate modeling can assist in optimizing a
black box objective function.

I A function about which one knows little – one opaque to
the optimizer – and that can only be probed through
expensive evaluation.

I We view optimization as an example of sequential design or
active learning (6.2).

I Recently Bayesian Optimization (BO) has caught on,
especially in the machine learning (ML) community, and
likely that’ll stick in part because it’s punchier than the
alternatives.

I BO terminology refers primarily to decision criteria for
sequential selection and model updating.

I Modern ML vernacular prefers acquisition functions and
GP learning.

Optimization Expected Improvement Classic EI illustration EI on our running example

Statistics and non-statistics optimization

I Models deployed to assist in optimization can be both
statistical and non-statistical, however the latter often have
strikingly similar statistical analogs.

I Potential for modern nonparametric statistical surrogate
modeling in this context is just recently being recognized
by communities for which optimization is bread-and-butter:
mathematical programming, statistics, ML, and more.
Optimization has played a vital role in stats and ML for
decades.

I All those ”L-BFGS-B” searches (Byrd et al. 1995) from
optim in earlier chapters, say to find MLEs or optimal
designs, are cases in point.

I It’s intriguing to wonder whether statistical thinking might
have something to give back to the optimization world, as
it were.

Optimization Expected Improvement Classic EI illustration EI on our running example

Bayesian Optimization (BO)

I The methodology is simple: train a GP on function
evaluations obtained so far; minimize the fitted surrogate
predictive mean surface of the GP to select the next
location for evaluation; repeat.

I This is an instance of Algorithm 6.1 in 6.2 where the
criterion J(x) in Step 3 is based on GP predictive mean
µn(x) = E(Y (x)|Dn) provided in Eq. (5.2).

I Although Step 3 deploys its own inner-optimization,
minimizing µn(x) is comparatively easy since it doesn’t
involve evaluating a computationally intensive, and
potentially noisy, blackbox.

I I shall refer to this “mean criterion” as the EY heuristic for
surrogate-assisted (Bayesian) optimization (BO).

Optimization Expected Improvement Classic EI illustration EI on our running example

Bayesian Optimization (BO)

Before we continue, let’s be clear about the problem. Whereas
the RSM literature (Chapter 3) orients toward maxima, BO and
math programming favor minimization, which I shall adopt for
our discussions here. Specifically, we wish to find

x∗ = arg min
x∈X

f(x)

where X is usually a hyperrectangle, a bounding box, or
another simply constrained region. We don’t have access to
derivative evaluations for f(x), nor do we necessarily want
them (or want to approximate them) because that could
represent additional substantial computational expense. As
such, methods described here fall under the class of
derivative-free optimization.

Optimization Expected Improvement Classic EI illustration EI on our running example

Bayesian Optimization (BO)

I All we get to do is evaluate f(x), which for now is
presumed to be deterministic.

I Generalizations will come after introducing main concepts,
including simple extensions for the noisy case.

I The literature targets scenarios where f(x) is expensive to
evaluate (in terms of computing time, say), but otherwise
is well-behaved: continuous, relatively smooth, only
real-valued inputs, etc.

I Again, these are relaxable modulo suitable surrogate
and/or kernel structure. Several appropriate choices are
introduced in later chapters.

Optimization Expected Improvement Classic EI illustration EI on our running example

best objective value (BOV)

I In empirical comparisons we typically track the best
objective value (BOV) found as a function of the number of
blackbox evaluations.

I In many applied contexts it’s more common to have a fixed
evaluation budget than it is to enjoy the luxury of running
to convergence.

I Nevertheless, monitoring progress plays a key role when
deciding if further expensive evaluations may be required.

Optimization Expected Improvement Classic EI illustration EI on our running example

A running example

f <- function(X)

{

if(is.null(nrow(X))) X <- matrix(X, nrow=1)

m <- 8.6928

s <- 2.4269

x1 <- 4*X[,1] - 2

x2 <- 4*X[,2] - 2

a <- 1 + (x1 + x2 + 1)^2 *

(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2)

b <- 30 + (2*x1 - 3*x2)^2 *

(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2)

f <- log(a*b)

f <- (f - m)/s

return(f)

}

Optimization Expected Improvement Classic EI illustration EI on our running example

A running example

Begin with a small space-filling Latin hypercube sample (LHS;
4.1) seed design in 2d.

library(lhs)

ninit <- 12

X <- randomLHS(ninit, 2)

y <- f(X)

Next fit a separable GP to those data, with a small nugget for
jitter.

library(laGP)

da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))

gpi <- newGPsep(X, y, d=da$start, g=1e-6, dK=TRUE)

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)$msg

Optimization Expected Improvement Classic EI illustration EI on our running example

A running example

Now the predictive mean surface (like f, through the evaluations
it’s trained on) may have many local minima, but let’s punt for
now on the ideal of global optimization of EY – of the so-called
“inner loop” – and see where we get with a search initialized at
the current best value.

obj.mean <- function(x, gpi)

predGPsep(gpi, matrix(x, nrow=1), lite=TRUE)$mean

m <- which.min(y)

opt <- optim(X[m,], obj.mean, lower=0, upper=1, method="L-BFGS-B", gpi=gpi)

opt$par

plot(X[1:ninit,], xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(X[m,1], X[m,2], opt$par[1], opt$par[2], length=0.1)

Optimization Expected Improvement Classic EI illustration EI on our running example

A running example

Code below wraps what we’ve been doing above into a while
loop with a simple check on convergence in order to “break
out”. If two outputs in a row are sufficiently close, within a
tolerance 1e− 4, then stop. That’s quite crude, but sufficient
for illustrative purposes.

while(1) {

m <- which.min(y)

opt <- optim(X[m,], obj.mean, lower=0, upper=1,

method="L-BFGS-B", gpi=gpi)

ynew <- f(opt$par)

if(abs(ynew - y[length(y)]) < 1e-4) break

updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

X <- rbind(X, opt$par)

y <- c(y, ynew)

}

deleteGPsep(gpi)

Optimization Expected Improvement Classic EI illustration EI on our running example

bov: best objective value

bov <- function(y, end=length(y))

{

prog <- rep(min(y), end)

prog[1:min(end, length(y))] <- y[1:min(end, length(y))]

for(i in 2:end)

if(is.na(prog[i]) || prog[i] > prog[i-1]) prog[i] <- prog[i-1]

return(prog)

}

#####################

plot(prog, type="l", col="gray", xlab="n: blackbox evaluations",

ylab="best objective value")

abline(v=ninit, lty=2)

legend("topright", "seed LHS", lty=2, bty="n")

Optimization Expected Improvement Classic EI illustration EI on our running example

Comparison to optim function in R

How about our favorite optimization library: optim using
”L-BFGS-B”? Working optim in as a comparator requires a
slight tweak.

Figure: Multiple BOV progress paths under random reinitialization
using BO and ”L-BFGS-B” (comparator under random restarts).

Optimization Expected Improvement Classic EI illustration EI on our running example

Construct an optimization function

optim.surr <- function(f, m, ninit, end, tol=1e-4)

{

initialization

X <- randomLHS(ninit, m)

y <- f(X)

da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, m))

gpi <- newGPsep(X, y, d=da$start, g=1e-6, dK=TRUE)

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

optimization loop

for(i in (ninit+1):end) {

m <- which.min(y)

opt <- optim(X[m,], obj.mean, lower=0, upper=1,

method="L-BFGS-B", gpi=gpi)

ynew <- f(opt$par)

if(abs(ynew - y[length(y)]) < tol) break

updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

X <- rbind(X, opt$par)

y <- c(y, ynew)

}

clean up and return

deleteGPsep(gpi)

return(list(X=X, y=y))

}

Optimization Expected Improvement Classic EI illustration EI on our running example

Simulation Study

reps <- 100

end <- 50

prog <- matrix(NA, nrow=reps, ncol=end)

for(r in 1:reps) {

os <- optim.surr(f, 2, ninit, end)

prog[r,] <- bov(os$y, end)

}

#######

matplot(t(prog), type="l", col="gray", lty=1,

xlab="n: blackbox evaluations", ylab="best objective value")

abline(v=ninit, lty=2)

legend("topright", "seed LHS", lty=2, bty="n")

Optimization Expected Improvement Classic EI illustration EI on our running example

Comparison to “L-BFGS-B”: Simulation Study

fprime <- function(x)

{

ynew <- f(x)

y <<- c(y, ynew)

return(ynew)

}

#######################

prog.optim <- matrix(NA, nrow=reps, ncol=end)

for(r in 1:reps) {

y <- c()

os <- optim(runif(2), fprime, lower=0, upper=1, method="L-BFGS-B")

prog.optim[r,] <- bov(y, end)

}

######################

matplot(t(prog.optim), type="l", col="red", lty=1,

xlab="n: blackbox evaluations", ylab="best objective value")

matlines(t(prog), type="l", col="gray", lty=1)

legend("topright", c("EY", "optim"), col=c("gray", "red"), lty=1, bty="n")

Optimization Expected Improvement Classic EI illustration EI on our running example

Something to think

Notice that we’re not actually doing statistics, because at no
point is uncertainty being taken into account. Only predictive
means are used; predictive variance doesn’t factor in. One way
to incorporate uncertainty is through the lower confidence
bound (LCB) heuristic (Srinivas et al. 2009). LCB is a simple
linear combination between mean and standard deviation:

αLCB(x) = −µn(x) + βnσn(x),

and
xn+1 = argmax

x
αLCB(x)

LCB introduces a sequence of tuning parameters βn , targeting
a balance between exploration and exploitation as iterations of
optimization progress. Larger βn lead to more conservative
searches, until in the limit µn(x) is ignored and acquisitions
reduce to ALM (6.2.1).

Optimization Expected Improvement Classic EI illustration EI on our running example

Defining Improvement

I In the mid 1990s, Matthias Schonlau (1997) was working
on his dissertation, which basically revisited Mockus’
Bayesian optimization idea from a GP and computer
experiments perspective.

I He came up with a heuristic called expected improvement
(EI), which is the basis of the so-called efficient global
optimization (EGO) algorithm.

I This distinction is subtle: one is the sequential design
criterion (EI), and the other is its repeated application
toward minimizing a blackbox function (EGO). In the
literature, you’ll see the overall method referred to by both
names/acronyms.

I Schonlau’s key insight was that predictive uncertainty is
underutilized by surrogate frameworks for optimization

Optimization Expected Improvement Classic EI illustration EI on our running example

Expected Improvement

Schonlau defined potential for improvement over fnmin at an
input location x as

I(x) = max 0, fnmin − Y (x).

I(x) is a random variable. It measures the amount by which
a response Y (x) could be below the BOV obtained so far. Here
Y (x) is shorthand for Y (x)|Dn, the predictive distribution
obtained from a fitted model. If Y (x)|Dn has nonzero
probability of taking on any value on the real line, as it does
under a Gaussian predictive distribution, then I(x) has nonzero
probability of being positive for any x.

Optimization Expected Improvement Classic EI illustration EI on our running example

Probability of Improvement (PI)

I One option is to convert it into a probability. The
probability of improvement (PI) criterion is
PI(x) = P (I(x) > 0|Dn), which is equivalent to
P (Y (x) < fnmin|Dn).

I Maximizing PI is sensible, but could result in very small
steps.

I The most probable input x∗ = maxx PI(x) may not hold
the greatest potential for large improvement, which is
important when considering the tacit goal of minimizing
the number of expensive blackbox evaluations.

I Instead, maximizing expected improvement (EI),
EI(x) = EI(x)|Dn, more squarely targets potential
for large improvement.

Optimization Expected Improvement Classic EI illustration EI on our running example

Calculate PI and/or EI via MC

The easiest way to calculate PI or EI, where “easy” means
agnostic to the form of Y (x)|Dn, is through MC
approximation. Draw y(t) ∼ Y (x)|Dn, for t = 1, . . . , T , from
their posterior predictive distribution, and average

PI(x) ≈ 1

T

T∑
t=1

Iy(t)>0

or

EI(x) ≈ 1

T

T∑
t=1

max {0, fnmin − y(t)}.

In the limit as T −→∞ these approximations become exact.
This approach works no matter what the distribution of Y (x)
is, so long as you can simulate from it. With fully Bayesian
response surface methods leveraging Markov chain Monte Carlo
(MCMC) posterior sampling, say, such approximation may
represent the only viable option.

Optimization Expected Improvement Classic EI illustration EI on our running example

Calculate PI in GP

However if Y (x)|Dn is Gaussian, as it’s under the predictive
equations of a GP surrogate conditional on a particular set of
hyperparameters, both have a convenient closed form. PI
involves a standard Gaussian CDF (Φ) evaluation, as readily
calculated with built-in functions in R.

PI(x) = Φ(
fnmin − µn(x)

σn(x)
)

Transparent in the formula above is that both predictive mean
and uncertainty factor into the calculation.

Optimization Expected Improvement Classic EI illustration EI on our running example

Calculate EI in GP

Deriving EI takes a little more work, but nothing a student of
calculus couldn’t do using substitution and integration by parts.
Details are in an appendix of Schonlau’s thesis. We will simply
quote the final result here.

EI(x) = (fnmin − µn(x))Φ(
fnmin − µn(x)

σn(x)
) + σn(x)φ(

fnmin − µn(x)

σn(x)
),

(1)

where φ is the standard Gaussian PDF. Notice how EI contains
PI as a component in a larger expression. “One half” of EI is
PI multiplied (or weighted) by the amount by which the
predictive mean is below fnmin.

Optimization Expected Improvement Classic EI illustration EI on our running example

EI conversation

Deriving EI takes a little more work, but nothing a student of
calculus couldn’t do using substitution and integration by parts.
Details are in an appendix of Schonlau’s thesis. We will simply
quote the final result here.

EI(x) = (fnmin − µn(x))Φ(
fnmin − µn(x)

σn(x)
) + σn(x)φ(

fnmin − µn(x)

σn(x)
),

(2)

where φ is the standard Gaussian PDF. Notice how EI contains
PI as a component in a larger expression. “One half” of EI is
PI multiplied (or weighted) by the amount by which the
predictive mean is below fnmin.

Optimization Expected Improvement Classic EI illustration EI on our running example

Illustration of EI

As a first illustration of EI, code chunks below recreate an
example and visuals presented in the first published/journal
manuscript describing EI/EGO (Jones, Schonlau, and Welch
1998).

x <- c(1, 2, 3, 4, 12)

y <- c(0, -1.75, -2, -0.5, 5)

####################

gpi <- newGP(matrix(x, ncol=1), y, d=10, g=1e-8)

xx <- seq(0, 13, length=1000)

p <- predGP(gpi, matrix(xx, ncol=1), lite=TRUE)

###################

m <- which.min(y)

fmin <- y[m]

d <- fmin - p$mean

s <- sqrt(p$s2)

dn <- d/s

ei <- d*pnorm(dn) + s*dnorm(dn)

Optimization Expected Improvement Classic EI illustration EI on our running example

Illustration of EI

par(mfrow=c(1,2))

plot(x, y, pch=19, xlim=c(0,13), ylim=c(-4,9), main="predictive surface")

lines(xx, p$mean)

lines(xx, p$mean + 2*sqrt(p$s2), col=2, lty=2)

lines(xx, p$mean - 2*sqrt(p$s2), col=2, lty=2)

abline(h=fmin, col=3, lty=3)

legend("topleft", c("mean", "95% PI", "fmin"), lty=1:3,

col=1:3, bty="n")

plot(xx, ei, type="l", col="blue", main="EI", xlab="x", ylim=c(0,0.15))

Optimization Expected Improvement Classic EI illustration EI on our running example

Illustration of EI

mm <- which.max(ei)

x <- c(x, xx[mm])

y <- c(y, p$mean[mm])

updateGP(gpi, matrix(xx[mm], ncol=1), p$mean[mm])

p <- predGP(gpi, matrix(xx, ncol=1), lite=TRUE)

deleteGP(gpi)

m <- which.min(y)

fmin <- y[m]

d <- fmin - p$mean

s <- sqrt(p$s2)

dn <- d/s

ei <- d*pnorm(dn) + s*dnorm(dn)

#######################

par(mfrow=c(1,2))

plot(x, y, pch=19, xlim=c(0,13), ylim=c(-4,9), main="predictive surface")

lines(xx, p$mean)

lines(xx, p$mean + 2*sqrt(p$s2), col=2, lty=2)

lines(xx, p$mean - 2*sqrt(p$s2), col=2, lty=2)

abline(h=fmin, col=3, lty=3)

legend("topleft", c("mean", "95% PI", "fmin"), lty=1:3,

col=1:3, bty="n")

plot(xx, ei, type="l", col="blue", main="EI", xlab="x", ylim=c(0,0.15))

Optimization Expected Improvement Classic EI illustration EI on our running example

EI as an objective function

EI <- function(gpi, x, fmin, pred=predGPsep)

{

if(is.null(nrow(x))) x <- matrix(x, nrow=1)

p <- pred(gpi, x, lite=TRUE)

d <- fmin - p$mean

sigma <- sqrt(p$s2)

dn <- d/sigma

ei <- d*pnorm(dn) + sigma*dnorm(dn)

return(ei)

}

obj.EI <- function(x, fmin, gpi, pred=predGPsep)

- EI(gpi, x, fmin, pred)

Optimization Expected Improvement Classic EI illustration EI on our running example

EI as an objective function

EI <- function(gpi, x, fmin, pred=predGPsep)

{

if(is.null(nrow(x))) x <- matrix(x, nrow=1)

p <- pred(gpi, x, lite=TRUE)

d <- fmin - p$mean

sigma <- sqrt(p$s2)

dn <- d/sigma

ei <- d*pnorm(dn) + sigma*dnorm(dn)

return(ei)

}

obj.EI <- function(x, fmin, gpi, pred=predGPsep)

- EI(gpi, x, fmin, pred)

Optimization Expected Improvement Classic EI illustration EI on our running example

EI search function

eps <- sqrt(.Machine$double.eps) ## used lots below

EI.search <- function(X, y, gpi, pred=predGPsep, multi.start=5, tol=eps)

{

m <- which.min(y)

fmin <- y[m]

start <- matrix(X[m,], nrow=1)

if(multi.start > 1)

start <- rbind(start, randomLHS(multi.start - 1, ncol(X)))

xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X)+1)

for(i in 1:nrow(start)) {

if(EI(gpi, start[i,], fmin) <= tol) { out <- list(value=-Inf); next }

out <- optim(start[i,], obj.EI, method="L-BFGS-B",

lower=0, upper=1, gpi=gpi, pred=pred, fmin=fmin)

xnew[i,] <- c(out$par, -out$value)

}

solns <- data.frame(cbind(start, xnew))

names(solns) <- c("s1", "s2", "x1", "x2", "val")

solns <- solns[solns$val > tol,]

return(solns)

}

Optimization Expected Improvement Classic EI illustration EI on our running example

EI search function

X <- randomLHS(ninit, 2)

y <- f(X)

gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)

da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))

####################

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- solns$val[m]

###################

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

points(solns$x1[m], solns$x2[m], col=2, pch=20)

Optimization Expected Improvement Classic EI illustration EI on our running example

Next surch

xnew <- as.matrix(solns[m,3:4])

X <- rbind(X, xnew)

y <- c(y, f(xnew))

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

##################

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- c(maxei, solns$val[m])

xnew <- as.matrix(solns[m,3:4])

X <- rbind(X, xnew)

y <- c(y, f(xnew))

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

###################

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

points(solns$x1[m], solns$x2[m], col=2, pch=20)

Optimization Expected Improvement Classic EI illustration EI on our running example

EI search function

xnew <- as.matrix(solns[m,3:4])

X <- rbind(X, xnew)

y <- c(y, f(xnew))

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

for(i in nrow(X):end) {

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- c(maxei, solns$val[m])

xnew <- as.matrix(solns[m,3:4])

ynew <- f(xnew)

X <- rbind(X, xnew)

y <- c(y, ynew)

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

}

deleteGPsep(gpi)

Optimization Expected Improvement Classic EI illustration EI on our running example

Compute BOV of EI search

prog.ei <- bov(y)

par(mfrow=c(1,2))

plot(prog.ei, type="l", xlab="n: blackbox evaluations",

ylab="EI best observed value")

abline(v=ninit, lty=2)

legend("topright", "seed LHS", lty=2)

plot(ninit:end, maxei, type="l", xlim=c(1,end),

xlab="n: blackbox evaluations", ylab="max EI")

abline(v=ninit, lty=2)

Optimization Expected Improvement Classic EI illustration EI on our running example

EI progress.

EI progress in terms of BOV (left) and maximal EI used for
acquisition (right).

Figure: EI progress in terms of BOV (left) and maximal EI used for
acquisition (right).

Optimization Expected Improvement Classic EI illustration EI on our running example

Compute BOV of EI search

optim.EI <- function(f, ninit, end)

{

initialization

X <- randomLHS(ninit, 2)

y <- f(X)

gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)

da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

optimization loop of sequential acquisitions

maxei <- c()

for(i in (ninit+1):end) {

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- c(maxei, solns$val[m])

xnew <- as.matrix(solns[m,3:4])

ynew <- f(xnew)

updateGPsep(gpi, xnew, ynew)

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

X <- rbind(X, xnew)

y <- c(y, ynew)

}

clean up and return

deleteGPsep(gpi)

return(list(X=X, y=y, maxei=maxei))

}

Optimization Expected Improvement Classic EI illustration EI on our running example

Compute BOV of EI search

reps <- 100

prog.ei <- matrix(NA, nrow=reps, ncol=end)

for(r in 1:reps) {

os <- optim.EI(f, ninit, end)

prog.ei[r,] <- bov(os$y)

}

plot(colMeans(prog.ei), col=1, lwd=2, type="l",

xlab="n: blackbox evaluations", ylab="average best objective value")

lines(colMeans(prog), col="gray", lwd=2)

lines(colMeans(prog.optim, na.rm=TRUE), col=2, lwd=2)

abline(v=ninit, lty=2)

legend("topright", c("optim", "EY", "EI", "seed LHS"),

col=c(2, "gray", 1, 1), lwd=c(2,2,2,1), lty=c(1,1,1,2),

bty="n")

Optimization Expected Improvement Classic EI illustration EI on our running example

Average BOV progress

Average BOV progress for the three comparators entertained so
far.

Figure: Average BOV progress for the three comparators entertained
so far.

Optimization Expected Improvement Classic EI illustration EI on our running example

Boxplots optimum value

Boxplots summarizing the distribution of progress after the
final acquisition.

Figure: Boxplots summarizing the distribution of progress after the
final acquisition.

	Optimization
	Expected Improvement
	Classic EI illustration
	EI on our running example

