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K-O Calibration Framework

The calibration data are composed of field (experimental)
measurements and computer model data. We denote the
response of the n field measurement by z = (21, ..., z,), where
each component z; is being subject to:

zi = (i) + €5,

where ((x;) denotes the response of the actual physical system,
x; are the observable inputs, and e; denotes the nugget error
the i*" observation.

The computer model aims to simulate the real system. The
input of the computer model consists of g—dimensional
observable input @ and p—dimensional calibration input values
t.

The computer model output is an unknown function n(x,t) of
the observable and calibration input, which simulates a physical
System.
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Calibration Model

The observations z;, the true process ((-), and the computer
model function 7(-,-) are linked through:

zi = (@) + e; = n(x,0) + 5(x;) + e, (1)

» §(-) is a model disagreement between the real system from
the computer model.

> O denotes the best fixed but unknown setting for the
calibration input ¢.

» Each of the n field measurements 7(-,-) consists of the
known observable input value x;, and the unknown
p—dimensional vector calibration parameter @, which is
considered fixed (for each of the n field measurements).

» Here the x; is considered fixed and we are interested to
infer the calibration parameters 6 w
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Computer model output: dealing with the nugget

>

>

The output of the computer model is y = n(x,t) + v, where
v represents the nugget error of the computer model.

For m computer experiment runs at input points
((xf,t1),..., (2}, tm)) (both observable and calibration
input) we denote the output as y = (y1,...,ym), where
y;j = n(@}, t;) + v;.

Although some computer models are generated by
deterministic solvers with no random error, to avoid an
infinite differentiability covariance function it is better to
add a nugget effect in the statistical model (Stein, 1999).

Moreover, Gramacy and Lee (2012) argue that the use of a
nugget helps protect against poor fits when assumptions
are violated. Statistical emulators for computer models are

not exact in practice. @
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Gaussian Process Model

Typically, the unknown functions 7(-,-) and J(-) are modeled as
two independent Gaussian processes (GP) (Kennedy and
O’Hagan, 2001; Higdon et al., 2004; Williams et al., 2006;
Higdon et al., 2008), that is:

77('> ) ~ N(Mﬁ('? ')7 CT](('v ')7 ('7 )))
and

0(-) ~ N(ps(-), cs(:,-))-

We will refer to this method as standard Bayesian Gaussian
process calibration (SBGPC). For 7(-,-) and 0(-) the mean is
usually assumed to be a linear model as: p,(z,t) = h,(z, )3,

and p5(x) = hs(z)" Bs.
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Choise for the Covaraince Function

The covariance function of 7(-, ) is modeled in a separable
form, as in Kennedy and O’Hagan (2001):

cen((z, 1), (',t) = ng(xy x'; ®n.)p(t, t; Pnt),
and the covariance function of §(-) is:
/ 2 /
65(m7m ) = 0'5/)(.’13,(13 §¢6,x)’

where a,% and o2 are the variance of 7(-,-) and §(-),
correspondingly, and p denotes the correlation function.

@
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Choice for the Covariance Function

>

| 2

>

The correlation function, p, is of particular importance as
it defines the smoothness of the random field.

Different choices, such as Matérn and power exponential
covariance family, can be made.

The separable power exponential covariance family is
considered as a standard choice in the computer
experiments (Santner et al., 2003) where the dimensionality
of the input can be usually high.

In specific, for the squared exponential family

p(z,x's ) = exp(—% lel:q W), where ¢, is the
correlation strength in the [ directio,n.

Different inputs usually have different meaning. Therefore,
it is preferable to have different correlation parameters.
The same formulations can be applied for p(t,t'; ¢y, +) and )
p(x, 2'; Ps.)- g
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Define Observation

» For simplicity in the formulation, we denote the (¢ + p)
dimensional input space, both observational and
calibration, by D.

> We also denote the observable input points of the n field
measurements by D' = {x1,...,x,}, and the set of
observable input points augmented with the calibration
parameter by D'(0) = {(x1,0),...,(z,,0)}.

» In addition, we denote the set of input points (both
observable and calibration) of the computer model by
D? = {(z},t1),...,(x},, tm)}. We also represent all of the
input dataset augmented by 6 as D = (D'(8), D?) and
their output as d = (z,y).

> The dataset consist of both field and computer model
output. We denote by D'(8) the input from the field and
D? the input from the computer model. D = {D'(0), D?}
input points and the corresponding output d = (z,y). cidmai
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Likelihood:

References

We model the output {d} with the SBGPC (explained above).
For a given calibration parameter 8, and GP parameters
0 = {®} = (B, ¢, 0%, 72), the likelihood is proportional to,

F(d]©,8) o [Val ™2 expl— (d — B(d)" V" (d ~ B(d)]

where E(d) and V are the mean and variance of the output d.

@
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Mean and Variance of the parameters

In order to represent more explicitly the mean and variance of
each component in the preceding formulation, we introduce
some new symbols:

> Let H,(D?) denotes the matrix with rows h,(z,t) for each
(x,t) € D?, and Hs(D"') denotes the matrix with rows
hs(x) for each x € D'

» Let V(D) = C,(D, D) be the covariance matrix with
(i,4) elements, ¢, ((@;,t;), (i, ty) for every pair
(:Bi,ti) € D, and (:l}i/,ti/) € D.

» Similarly, we define V3(D') = Cs(D*, D).

@

“Cincinnati



Calibration Model: My notations Example Calibration Model Book References
000000000 e0000000 00000 0000000000

Mean and Variance of the parameters

The mean of the output is:

IMU@)mwﬂrq

E(d)=HpB = [ H,(D?) o 85

and its covariance matrix is:

Vs(DY) + 721, 0
w:m@@:www(“ ) ),

0 21,

where 72 and 72 are the variances of the nuggets, and I,, and I,
are identity matrices of dimension n x n and m x m respectively.

@
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Prior:

We assign a prior distribution on the parameter (7,6, ®), such
as:

(6,0) = 7(8)7(®) = 1(8)7(By, 7)1 ()7 (Bs, 05)m(¢ps)m(7e) (7).

the prior distributions of the GP hyper-parameters are:

"By od)n(dy) x — [] [G6ulacs. e,

Tk 1=1:(g+p)

w(B5,08)n(s) o — ] [G(6silaca b))

g I=1:p

where (¢ + p) is the dimension of the experimental input and
calibration space, ¢ is the dimension of the experimental input

space, and aq,1, Bg,1 express a prior knowledge. @
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Calibration and nugget parameters prior

» We define the prior for @ with a modified Beta distribution
with parameters defined to represent previous studies or
the domain scientist opinion.

» We also assign priors for the nugget hyper-parameter 7(7)
and 7(7,) as exponential distribution to ensure positive
values.
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Posterior:

The posterior distribution is known up to a normalizing
constant as:

p(©.6]d) ox w(O)m(by. B )|Vl (2)
2

(d—E(d)"Vy ' (d— E(d))].

1
X exp[—g

Posterior inference for the proposed model is facilitated by an
MCMC sampler.

@
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Bayesian Inference

> Conditional on the calibration parameters 0 , the full joint
posterior distribution of the GP hyperparameters
(®|d, 0, T) is analytically intractable.

» Exact posterior inference is performed by a customized
MCMC algorithm. Analytically, we firstly sample from the
closed posterior distribution of 3|6, ¢, 72, d.

» Then, we sample from the posterior distribution of
¢,0?,7%|d, 6, which we find by integrating out 3 with
Metropolis-Hastings (M-H).

@
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Cont: Bayesian Inference

Given the prior specification for 8 and o2, the close form of the
posterior distribution of 3 given 8, ¢, T, d is a multivaraite
Normal distribution with mean B WH TVd 'd and variance
W=H TV VH is:

/6‘67¢aTadNN(B7W)' (3)

Both B and W depend on (¢, %) and 0. Using properties of
the normal density function, we integrate out 3 and compute
the joint posterior distribution of ¢, a2, 72%|d, 6 as:

p(¢,0%,7°|d, ) o< n(@)m(o®)m(r?) Va2 W2

expl—5 (d — HP)' V" (d — HB))

¢
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Cont: Bayesian Inference

The conditional posteriors of ¢|a?, T, 6%|¢, T and 7|02, ¢
cannot be sampled directly. Therefore, we use
Metropolis-Hastings updates within a Gibbs sampler, (Mueller,
1993; Gelfand and Smith, 1990; Hastings, 1970).

Let

X = (¢, 0-21 T) = (¢77,17 ) ¢n,(q+p)a Po,15 -+ Pngs 07277 05, Te, Ty)-
For each component of x, x; for j=1,...,(2¢+p+4), we
perform Metropolis within Gibbs as in (Mueller, 1993). For any
step of the Gibbs sampler that does not have a close form
conditional posterior distribution

POXGIdi, X1s - X1, Xj—1, - - - s Xj,(2q+p+4))> substitute a MH
sampler.

@
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Metropolis-Hastings updates within a Gibbs

Forj=1,...,(2¢+p+ 4) given
() t+1 t+1 .
X( ) (Xklv"'7X] 17X] 17 "aX€2q+p+4))'
¢
1. Generate xj ~ qj(Xj‘Xj ) = log N(X;]Xg. )) from a log
Normal distribution.

2. Calculate:

1 v ()]
. p(x;ld, x( j))qj(xj Ixj) 5)
p(x; Wid, x| x ))qg(lex] )

3. Set Xg-tﬂ) = X with probability min (1,7) and X(t+1) Xg)

with the remaining probability.
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First case study:

In our first example, we assume a function of n(-) in a
three-dimensional input space (one observable input z; and two
calibration inputs t1, t2):

(1 —21)cos(mt1) + 0tz, 0 <z <04
(1 — 1) cos(mty) + 0tg + 0.5, 04 < x; < 1,

n(xi,t,t2) = {

where the calibration variable to does not affect the output of
the n(-,-, ). From this formulation, it is clear that the computer
model has a discontinuity in the observable input x;. To make
the case more realistic, we assume the computer model output
has a normally distributed nugget effect with zero mean and
variance 72 = 0.3. We also assume the discrepancy function is
d(x1) = 0.7, and the real experimental output is

¢(x1) = n(x1,0.5,0.5) + 6(x1) + e for calibration parameters

0 = (0.5,0.5). ~Edinnau



Calibration Model: My notations Example Calibration Model Book References
00000000000000000 0®000 0000000000

A

0.8] 0.8
0.6] 0.6
< =
0.4 0.4
0.2 0.2
2000 1000 O O 2000 4000 6000 8000 10000 00 2000 0 0 2000 4000 6000 8000 10000
Pr iteration Pr iteration

(a) Calibration of #; using GP cali- (b) Calibration of 8; using TGP cal-
bration ibration

Figure: MCMC for the calibration parameter 6; for two different
calibration methods (a) GP calibration and (b) proposed TGP
calibration.
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(b) Prediction of the output using
TGP calibration

Figure: Prediction performance of the output (a) GP calibration and

(b) proposed TGP calibration.
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t 00 x

(a) Prediction of the 7 using GP cal- (b) Prediction of n using TGP cali-
ibration bration

Figure: MCMC for the calibration parameter 6; for two different
calibration methods (a) GP calibration and (b) proposed TGP
calibration.

Cincinnati



Calibration Model: My notations Example Calibration Model Book References

000000000000 00000 [e]e]e]e] } 0000000000

0 0.2 0.4 0.6 0.8 1
X x

(a) Prediction of the real system us- (b) Prediction of the real system us-
ing GP calibration ing TGP calibration

Figure: Prediction mean and 95% prediction intervals using two
different calibration methods (a) GP calibration and (b) proposed
TGP calibration.
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Field Observation

Let Y (x) denote a field observation under m,-dimensional
conditions x, and y(x) denote the real output under condition
. Assume R and F' are related as follows.

YH(x) = yi(2) +e

where € "$ N'(0, 02).
» This isn’t much different from typical modeling apparatuses

where observations are corrupted by independent and
identically distributed idiosyncratic Gaussian noise.

» Considering the expense of setting up a physical experiment
in the field, we presume that only a small number np of
field observations Y;,,, are available at x locations X, .

> Replicates can be helpful for separating signal from noise,
especially when o2 is large. @
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Computer Model

>

Let y™(x,u) denote output from a computer model run
under conditions & and tuning or calibration parameters wu.

We shall presume that y*(-,-) is deterministic to simplify
the following discussion.

There’s no reason why stochastic simulation must be
precluded by the framework, however such setups are far
less well investigated in the literature.

Inputs x to computer model y (x,u) coincide with x’s
from the field experiment(s). Inputs u, in dimension m,,,
represent any aspect of M which can’t be controlled in F
and/or are unknown in R.

It’s quite typical for a mathematical model, or its computer

implementation, to have more knobs than can be controlled

in the field. @
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Calibration Parameter

Example u coordinates may arise from an artificial aspect of
computer implementation, like mesh size. Or they might have
real physical meaning, like acceleration due to gravity, which is
not known (precisely enough) to be recorded in the field. Some
practitioners make a distinction between the two, calling the
former a tuning parameter (omitting from probabilistic
modeling enterprises), and treating only the latter as a
calibration parameter u. I'll be lazy by using those two terms
interchangeably and modeling in a unified fashion.

@
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K-O Calibration Framework

Kennedy and O’Hagan (2001) proposed a Bayesian framework
for coupling M and F. KOH, hereafter, represent a real process
R as the computer model output at the best setting of
calibration parameters, u*, plus a discrepancy term
acknowledging that there can be systematic disagreement
between model and truth.

y"(z) = yM (2, u*) + b(x)
so that
Y7 (@) =y (@, u*) + b(@) + ¢

The quantity b(-) is a functional discrepancy, or bias correction.

—b(z) = yM (2, u*) -y ().
The point here is that a computer model has systematic

imperfections, even under its best tuning «* , but KOH specify __
an a priori belief that reasonable correction can be learned
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K-O Calibration Framework

» The point here is that a computer model has systematic

imperfections, even under its best tuning u*
» KOH specify an a priori belief that reasonable correction
can be learned through b(-).
> Errors € are independent zero-mean Gaussian with variance
2

oc.
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KOH framework

» Altogether, unknowns are u*, o2, and discrepancy b(-).
KOH emphasized Bayesian inference, particularly
averaging over trade-offs between calibration values u and
discrepancies b(-) under a GP prior.

» Known information or restrictions on u-values can be
specified through prior p(u). Otherwise a uniform prior
(over a finite domain) can be used.

» Often, and especially when little prior information is
available on u, a regularizing prior with mass somewhat
more concentrated on a default or midway value can
prevent over-concentration of posterior density on
boundary settings.

» Reference priors for o2 are typical (Berger, De Oliveira,
and Sanso 2001).

» KOH utilized a GP specification with linear mean for b(-),
but the presentation here considers a zero-mean.

“Cincinnati
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Additive Discrepancy

If evaluating the computer model is fast, then inference
(Bayesian or otherwise) is made rather straightforward via
residuals between computer model outputs and field
observations at nr field locations X, ,,

which can be computed at will for any v (Higdon et al. 2004).
An “r” superscript may have been more appropriate for
residuals. Besides avoiding clash with “R” for “real”,
superscript “b” was chosen instead to emphasize the role of
residuals in training b(-). Eq. (is characterizing a new
np-dimensional response vector Yb|unF at inputs X, ..

@
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Likelihood with Additive Discrepancy

With a GP prior for b(-), YA* is np-variate MVN with
covariance derived through inverse exponentiated squared
Euclidean distances between rows of X,,,. This implies a
likelihood on parameters (u, ), where 6, may collect scale,m,
lengthscales and nugget hyperparameters. Let E?LF denote the
np X np covariance matrix built from X, and 6,. Note that by
including both scale and nugget in 6, E%F captures field data
variance 2 implicitly through their product. The likelihood is
thus proportional to

_ b
=5, Pep{— LveT(sh )y

That likelihood can be maxumzed over all unknown
coordinates, or fully Bayesian inference may be used to sample

from the joint posterior. «
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Making Inference

» If evaluating the computer model is expensive or otherwise
indirectly available, a surrogate 7 (-,-) can be fit to nyy
simulations of M run over a design [XnM;UnM] in
(z, u)-space.

» KOH recommend a GP prior for yM, i.e., a coupled pair of
GPs including b(-).

» Rather than performing inference for 4™ separately, using
just nys runs as typical of computer experiments in
isolation, KOH recommend joint posterior inference for all
unknowns © = (y™ b(-),u*, o2) using the full corpus of

data from computer model and field experiment [Y,,,,, Yy, ]

> From a Bayesian perspective, this is the coherent thing to
do: infer all unknowns jointly given all data.
@
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Likelihood evaluation

The likelihood involves evaluating a mean-zero MVN density,
but this time it’s ny; + ng variate for stacked computer model
and field data.

YnM N ( 0 ZnM Z’I’L]\/[( nF7u) )
Yop M0 )\ By (Xng, w)T S (w) + 35,

¢
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