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K-O Calibration Framework

The calibration data are composed of field (experimental)
measurements and computer model data. We denote the
response of the n field measurement by z = (z1, . . . , zn), where
each component zi is being subject to:

zi = ζ(xi) + ei,

where ζ(xi) denotes the response of the actual physical system,
xi are the observable inputs, and ei denotes the nugget error
the ith observation.
The computer model aims to simulate the real system. The
input of the computer model consists of q−dimensional
observable input x and p−dimensional calibration input values
t.
The computer model output is an unknown function η(x, t) of
the observable and calibration input, which simulates a physical
system.
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Calibration Model

The observations zi, the true process ζ(·), and the computer
model function η(·, ·) are linked through:

zi = ζ(xi) + ei = η(xi,θ) + δ(xi) + ei, (1)

I δ(·) is a model disagreement between the real system from
the computer model.

I θ denotes the best fixed but unknown setting for the
calibration input t.

I Each of the n field measurements η(·, ·) consists of the
known observable input value xi, and the unknown
p−dimensional vector calibration parameter θ, which is
considered fixed (for each of the n field measurements).

I Here the xi is considered fixed and we are interested to
infer the calibration parameters θ
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Computer model output: dealing with the nugget

I The output of the computer model is y = η(x, t) + v, where
v represents the nugget error of the computer model.

I For m computer experiment runs at input points
((x∗1, t1), . . . , (x

∗
m, tm)) (both observable and calibration

input) we denote the output as y = (y1, . . . , ym), where
yj = η(x∗j , tj) + vj .

I Although some computer models are generated by
deterministic solvers with no random error, to avoid an
infinite differentiability covariance function it is better to
add a nugget effect in the statistical model (Stein, 1999).

I Moreover, Gramacy and Lee (2012) argue that the use of a
nugget helps protect against poor fits when assumptions
are violated. Statistical emulators for computer models are
not exact in practice.
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Gaussian Process Model

Typically, the unknown functions η(·, ·) and δ(·) are modeled as
two independent Gaussian processes (GP) (Kennedy and
O’Hagan, 2001; Higdon et al., 2004; Williams et al., 2006;
Higdon et al., 2008), that is:

η(·, ·) ∼ N(µη(·, ·), cη((·, ·), (·, ·)))

and

δ(·) ∼ N(µδ(·), cδ(·, ·)).

We will refer to this method as standard Bayesian Gaussian
process calibration (SBGPC). For η(·, ·) and δ(·) the mean is
usually assumed to be a linear model as: µη(x, t) = hη(x, t)

Tβη
and µδ(x) = hδ(x)Tβδ.
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Choise for the Covaraince Function

The covariance function of η(·, ·) is modeled in a separable
form, as in Kennedy and O’Hagan (2001):

cη((x, t), (x
′, t′)) = σ2ηρ(x,x′;φη,x)ρ(t, t′;φη,t),

and the covariance function of δ(·) is:

cδ(x,x
′) = σ2δρ(x,x′;φδ,x),

where σ2η and σ2δ are the variance of η(·, ·) and δ(·),
correspondingly, and ρ denotes the correlation function.
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Choice for the Covariance Function

I The correlation function, ρ, is of particular importance as
it defines the smoothness of the random field.

I Different choices, such as Matérn and power exponential
covariance family, can be made.

I The separable power exponential covariance family is
considered as a standard choice in the computer
experiments (Santner et al., 2003) where the dimensionality
of the input can be usually high.

I In specific, for the squared exponential family

ρ(x,x′;φη,x) = exp

(
−1

2

∑
l=1:q

||xl−x′
l||

2

φ2l,x

)
, where φl,x is the

correlation strength in the l direction.
I Different inputs usually have different meaning. Therefore,

it is preferable to have different correlation parameters.
I The same formulations can be applied for ρ(t, t′;φη,t) and
ρ(x,x′;φδ,x).
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Define Observation

I For simplicity in the formulation, we denote the (q + p)
dimensional input space, both observational and
calibration, by D.

I We also denote the observable input points of the n field
measurements by D1 = {x1, . . . ,xn}, and the set of
observable input points augmented with the calibration
parameter by D1(θ) = {(x1,θ), . . . , (xn,θ)}.

I In addition, we denote the set of input points (both
observable and calibration) of the computer model by
D2 = {(x∗1, t1), . . . , (x∗m, tm)}. We also represent all of the
input dataset augmented by θ as D = (D1(θ),D2) and
their output as d = (z,y).

I The dataset consist of both field and computer model
output. We denote by D1(θ) the input from the field and
D2 the input from the computer model. D = {D1(θ),D2}
input points and the corresponding output d = (z,y).
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Likelihood:

We model the output {d} with the SBGPC (explained above).
For a given calibration parameter θ, and GP parameters
Θ = {Θ} = (β,φ,σ2, τ 2), the likelihood is proportional to,

f(d|Θ,θ) ∝ |Vd|−1/2 exp[−1

2
(d− E(d))TV −1d (d− E(d))],

where E(d) and Vd are the mean and variance of the output d.
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Mean and Variance of the parameters

In order to represent more explicitly the mean and variance of
each component in the preceding formulation, we introduce
some new symbols:

I Let Hη(D
2) denotes the matrix with rows hη(x, t) for each

(x, t) ∈D2, and Hδ(D
1) denotes the matrix with rows

hδ(x) for each x ∈D1.

I Let Vη(D) = Cη(D,D) be the covariance matrix with
(i, i′) elements, cη((xi, ti), (xi′ , ti′) for every pair
(xi, ti) ∈D, and (xi′ , ti′) ∈D.

I Similarly, we define Vδ(D
1) = Cδ(D

1,D1).
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Mean and Variance of the parameters

The mean of the output is:

E(d) = Hβ =

[
Hη(D

1(θ)) Hδ(D
1)

Hη(D
2) 0

][
βη

βδ

]
,

and its covariance matrix is:

Vd = cov(d,d) = Vη(D) +

(
Vδ(D

1) + τ2e In 0

0 τ2v Im

)
,

where τ2e and τ2v are the variances of the nuggets, and In and Im
are identity matrices of dimension n×n and m×m respectively.
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Prior:

We assign a prior distribution on the parameter (T ,θ,Θ), such
as:

π(θ,Θ) = π(θ)π(Θ) = π(θ)π(βη, σ
2
η)π(φη)π(βδ, σ

2
δ )π(φδ)π(τe)π(τv).

the prior distributions of the GP hyper-parameters are:

π(βη, σ
2
η)π(φη) ∝

1

σ2ηk

∏
l=1:(q+p)

[G(φη,l|αG,1, βG,1)]

π(βδ, σ
2
δ )π(φδ) ∝

1

σ2δ

∏
l=1:p

[G(φδ,l|αG,1, βG,1)],

where (q + p) is the dimension of the experimental input and
calibration space, q is the dimension of the experimental input
space, and αG,1, βG,1 express a prior knowledge.
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Calibration and nugget parameters prior

I We define the prior for θ with a modified Beta distribution
with parameters defined to represent previous studies or
the domain scientist opinion.

I We also assign priors for the nugget hyper-parameter π(τe)
and π(τv) as exponential distribution to ensure positive
values.
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Posterior:

The posterior distribution is known up to a normalizing
constant as:

p(Θ,θ|d) ∝ π(θ)π(φη,βη, σ
2
η)|Vd|−1/2

× exp[−1

2
(d− E(d))TV −1

d (d− E(d))].
(2)

Posterior inference for the proposed model is facilitated by an
MCMC sampler.
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Bayesian Inference

I Conditional on the calibration parameters θ , the full joint
posterior distribution of the GP hyperparameters
(Θ|d,θ, T ) is analytically intractable.

I Exact posterior inference is performed by a customized
MCMC algorithm. Analytically, we firstly sample from the
closed posterior distribution of β|θ,φ, τ 2,d.

I Then, we sample from the posterior distribution of
φ,σ2, τ 2|d,θ, which we find by integrating out β with
Metropolis-Hastings (M-H).
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Cont: Bayesian Inference

Given the prior specification for β and σ2, the close form of the
posterior distribution of β given θ,φ, τ ,d is a multivaraite
Normal distribution with mean β̂ = WHTV −1d d and variance
W = HTV −1d H is:

β|θ,φ, τ ,d ∼ N (β̂,W ). (3)

Both β̂ and W depend on (φ, τ 2) and θ. Using properties of
the normal density function, we integrate out β and compute
the joint posterior distribution of φ,σ2, τ 2|d,θ as:

p(φ,σ2, τ 2|d,θ) ∝ π(φ)π(σ2)π(τ 2)|Vd|−1/2|W |1/2

exp[−1

2
(d−Hβ̂)TV −1

d (d−Hβ̂)].
(4)
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Cont: Bayesian Inference

The conditional posteriors of φ|σ2, τ , σ2|φ, τ and τ |σ2,φ
cannot be sampled directly. Therefore, we use
Metropolis-Hastings updates within a Gibbs sampler, (Mueller,
1993; Gelfand and Smith, 1990; Hastings, 1970).
Let
χ = (φ,σ2, τ ) = (φη,1, . . . , φη,(q+p), φδ,1, . . . , φη,q, σ

2
η, σδ, τe, τν).

For each component of χ, χj for j = 1, . . . , (2q + p+ 4), we
perform Metropolis within Gibbs as in (Mueller, 1993). For any
step of the Gibbs sampler that does not have a close form
conditional posterior distribution
p(χj |dj , χ1, . . . , χj−1, χj−1, . . . , χj,(2q+p+4)), substitute a MH
sampler.
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Metropolis-Hastings updates within a Gibbs

For j = 1, . . . , (2q + p+ 4), given

χ
(t)
(−j) = (χt+1

k,1 , . . . , χ
t+1
j−1, χ

t
j−1, . . . , χ

t
(2q+p+4)):

1. Generate χ∗j ∼ qj(χ∗j |χ
(t)
j ) ≡ logN(χ∗j |χ

(t)
j ) from a log

Normal distribution.

2. Calculate:

r =
p(χ∗j |d,χ

(t)
(−j))qj(χ

(t)
j |χ∗j )

p(χ
(t)
j |d,χ

(t)
(−j))qj(χ

∗
j |χ

(t)
j )

. (5)

3. Set χ
(t+1)
j = χ∗j with probability min (1, r) and χ

(t+1)
j = χ

(t)
j

with the remaining probability.
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First case study:

In our first example, we assume a function of η(·) in a
three-dimensional input space (one observable input x1 and two
calibration inputs t1, t2):

η(x1, t1, t2) =

{
(1− x1) cos(πt1) + 0t2, 0 ≤ x1 < 0.4

(1− x1) cos(πt1) + 0t2 + 0.5, 0.4 ≤ x1 < 1,

where the calibration variable t2 does not affect the output of
the η(·, ·, ·). From this formulation, it is clear that the computer
model has a discontinuity in the observable input x1. To make
the case more realistic, we assume the computer model output
has a normally distributed nugget effect with zero mean and
variance τ2v = 0.3. We also assume the discrepancy function is
δ(x1) = 0.7, and the real experimental output is
ζ(x1) = η(x1, 0.5, 0.5) + δ(x1) + e for calibration parameters
θ = (0.5, 0.5).
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(a) Calibration of θ1 using GP cali-
bration
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(b) Calibration of θ1 using TGP cal-
ibration

Figure: MCMC for the calibration parameter θ1 for two different
calibration methods (a) GP calibration and (b) proposed TGP
calibration.
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(a) Prediction of the output, ζ, us-
ing GP calibration
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(b) Prediction of the output using
TGP calibration

Figure: Prediction performance of the output (a) GP calibration and
(b) proposed TGP calibration.
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(b) Prediction of η using TGP cali-
bration

Figure: MCMC for the calibration parameter θ1 for two different
calibration methods (a) GP calibration and (b) proposed TGP
calibration.
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(a) Prediction of the real system us-
ing GP calibration
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(b) Prediction of the real system us-
ing TGP calibration

Figure: Prediction mean and 95% prediction intervals using two
different calibration methods (a) GP calibration and (b) proposed
TGP calibration.
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Field Observation

Let Y F (x) denote a field observation under mx-dimensional
conditions x, and yR(x) denote the real output under condition
x. Assume R and F are related as follows.

Y F (x) = yR(x) + ε,

where ε
iid∼ N (0, σ2ε ).

I This isn’t much different from typical modeling apparatuses
where observations are corrupted by independent and
identically distributed idiosyncratic Gaussian noise.

I Considering the expense of setting up a physical experiment
in the field, we presume that only a small number nF of
field observations YnF are available at x locations XnF .

I Replicates can be helpful for separating signal from noise,
especially when σ2ε is large.
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Computer Model

I Let yM (x,u) denote output from a computer model run
under conditions x and tuning or calibration parameters u.

I We shall presume that yM (·, ·) is deterministic to simplify
the following discussion.

I There’s no reason why stochastic simulation must be
precluded by the framework, however such setups are far
less well investigated in the literature.

I Inputs x to computer model yM (x,u) coincide with x’s
from the field experiment(s). Inputs u, in dimension mu,
represent any aspect of M which can’t be controlled in F
and/or are unknown in R.

I It’s quite typical for a mathematical model, or its computer
implementation, to have more knobs than can be controlled
in the field.
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Calibration Parameter

Example u coordinates may arise from an artificial aspect of
computer implementation, like mesh size. Or they might have
real physical meaning, like acceleration due to gravity, which is
not known (precisely enough) to be recorded in the field. Some
practitioners make a distinction between the two, calling the
former a tuning parameter (omitting from probabilistic
modeling enterprises), and treating only the latter as a
calibration parameter u. I’ll be lazy by using those two terms
interchangeably and modeling in a unified fashion.
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K-O Calibration Framework

Kennedy and O’Hagan (2001) proposed a Bayesian framework
for coupling M and F. KOH, hereafter, represent a real process
R as the computer model output at the best setting of
calibration parameters, u∗, plus a discrepancy term
acknowledging that there can be systematic disagreement
between model and truth.

yR(x) = yM (x,u∗) + b(x)

so that
Y F (x) = yM (x,u∗) + b(x) + ε

The quantity b(·) is a functional discrepancy, or bias correction.

−b(x) = yM (x,u∗)− yR(x).

The point here is that a computer model has systematic
imperfections, even under its best tuning u∗ , but KOH specify
an a priori belief that reasonable correction can be learned
through b(·). Errors ε are independent zero-mean Gaussian with
variance σ2ε .
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K-O Calibration Framework

I The point here is that a computer model has systematic
imperfections, even under its best tuning u∗

I KOH specify an a priori belief that reasonable correction
can be learned through b(·).

I Errors ε are independent zero-mean Gaussian with variance
σ2ε .
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KOH framework

I Altogether, unknowns are u∗, σ2ε , and discrepancy b(·).
KOH emphasized Bayesian inference, particularly
averaging over trade-offs between calibration values u and
discrepancies b(·) under a GP prior.

I Known information or restrictions on u-values can be
specified through prior p(u). Otherwise a uniform prior
(over a finite domain) can be used.

I Often, and especially when little prior information is
available on u, a regularizing prior with mass somewhat
more concentrated on a default or midway value can
prevent over-concentration of posterior density on
boundary settings.

I Reference priors for σ2ε are typical (Berger, De Oliveira,
and Sanso 2001).

I KOH utilized a GP specification with linear mean for b(·),
but the presentation here considers a zero-mean.
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Additive Discrepancy

If evaluating the computer model is fast, then inference
(Bayesian or otherwise) is made rather straightforward via
residuals between computer model outputs and field
observations at nF field locations XnF

Y b|u
nF

= yb(XnF ,u) = YnF − Y
M |u
nF

= YnF − y
M (XnF ,u)

which can be computed at will for any u (Higdon et al. 2004).
An “r” superscript may have been more appropriate for
residuals. Besides avoiding clash with “R” for “real”,
superscript “b” was chosen instead to emphasize the role of
residuals in training b(·). Eq. (is characterizing a new
nF -dimensional response vector Y b|unF at inputs XnF .
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Likelihood with Additive Discrepancy

With a GP prior for b(·), Y b|u
Fn

is nF -variate MVN with
covariance derived through inverse exponentiated squared
Euclidean distances between rows of XnF . This implies a
likelihood on parameters (u, θb), where θb may collect scale,mx

lengthscales and nugget hyperparameters. Let Σb
nF

denote the
nF × nF covariance matrix built from XnF and θb. Note that by
including both scale and nugget in θb, Σb

nF
captures field data

variance σ2ε implicitly through their product. The likelihood is
thus proportional to

|Σb
nF
|−1/2exp

{
−1

2
(Y

b|u
Fn

)T (Σb
nF

)−1Y
b|u
Fn

}
That likelihood can be maximized over all unknown
coordinates, or fully Bayesian inference may be used to sample
from the joint posterior.
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Making Inference

I If evaluating the computer model is expensive or otherwise
indirectly available, a surrogate ŷM (·, ·) can be fit to nM
simulations of M run over a design [XnM ;UnM ] in
(x,u)-space.

I KOH recommend a GP prior for yM , i.e., a coupled pair of
GPs including b(·).

I Rather than performing inference for yM separately, using
just nM runs as typical of computer experiments in
isolation, KOH recommend joint posterior inference for all
unknowns Θ = (yM , b(·),u∗, σ2ε ) using the full corpus of
data from computer model and field experiment [YnM , YnF ].

I From a Bayesian perspective, this is the coherent thing to
do: infer all unknowns jointly given all data.
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Likelihood evaluation

The likelihood involves evaluating a mean-zero MVN density,
but this time it’s nM + nF variate for stacked computer model
and field data.(

YnM

YnF

)
∼ NnM+nF

((0
0

)
,

(
ΣnM ΣnM (XnF ,u)

ΣnM (XnF ,u)T ΣnF (u) + Σb
nF

))
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