
Tapering TGP laGP

Surrogates 7020
Chapter 9: GP Fidelity and Scale

Dr. Alex Bledar Konomi

Department of Mathematical Sciences
University of Cincinnati

Tapering TGP laGP

Gaussian Process

▶ Flops in O(n3) for matrix decompositions, furnishing
determinants and inverses, is severe.

▶ Many practitioners point out that storage, which is in
O(n2), is the real bottleneck, at least on modern laptops
and workstations.

▶ Even if you’re fine with waiting hours for MVN density
calculation for a single likelihood evaluation, chances are
you wouldn’t have enough high-speed memory (RAM) to
store the n× n matrix Σn, let alone its inverse too and any
auxiliary space required.

Tapering TGP laGP

Compactly supported kernels

▶ A kernel krmax(r) is said to have compact support if
krmax(r) = 0 when r > rmax. Recall from 5.3.3 that
r = |x− x′| for a stationary covariance.

▶ We may still proceed component-wise with rj = |xj − x′j |
and rj,max for a separable compactly supported kernel,
augment with scales for amplitude adjustments, nuggets for
noisy data and embellish with smoothness parameters
(Matern), etc.

▶ Rate of decay of correlation can be managed by lengthscale
hyperparameters.

▶ A compactly supported kernel (CSK) introduces zeros into
the covariance matrix, so sparse matrix methods may be
deployed to aid in computations, both in terms of
economizing on storage and more efficient decomposition
for inverses and determinants.

Tapering TGP laGP

Two families of CSKs

Two families of CSKs, Bohman and truncated power, offer
decent approximations to the power exponential family (5.3.3),
of which the Gaussian (power α = 2) is a special case. These
kernels are zero for r > rmax, and for r ≤ rmax:

kBrmax
(r) = (1− r

rmax
) cos(

πr

rmax
) +

1

π
sin(

πr

rmax
)

ktprmax
(r;α, ν) = [1− (r/rmax)

α]ν ,

where 0 < α < 2 and ν ≥ νm(α). The function νm(α) in the
definition of the truncated power kernel represents a restriction
necessary to ensure a valid correlation in m dimensions.

Tapering TGP laGP

Working with CSKs

kB <- function(r, rmax) {

rnorm <- r/rmax

k <- (1 - rnorm)*cos(pi*rnorm) + sin(pi*rnorm)/pi

k <- k*(r < rmax)}

###

library(plgp)

X <- matrix(seq(0, 10, length=2000), ncol=1)

D <- distance(X)

##

eps <- sqrt(.Machine$double.eps) ## numerical stability

K <- exp(-D) + diag(eps, nrow(D))

K2 <- kB(sqrt(D), 2)

K1 <- kB(sqrt(D), 1)

K025 <- kB(sqrt(D), 0.25)

c(mean(K > 0), mean(K2 > 0), mean(K1 > 0), mean(K025 > 0))

Tapering TGP laGP

Invert these matrixes in R

Investigating the extent to which those levels of sparsity
translate into computational savings requires investing in a
sparse matrix library e.g., spam (Furrer 2018) or Matrix (Bates
and Maechler 2019).

library(Matrix)

c(system.time(chol(K))[3],

system.time(chol(Matrix(K2, sparse=TRUE)))[3],

system.time(chol(Matrix(K1, sparse=TRUE)))[3],

system.time(chol(Matrix(K025, sparse=TRUE)))[3])

Tapering TGP laGP

Discusion

▶ As you can see, small rmax holds the potential for more
than an order of magnitude speedup.

▶ Further improvements may be possible if the matrix can be
built natively in sparse representation.

▶ We want to encourage sparsity because that means speed,
but getting enough sparsity requires lots of zeros, and that
means sacrificing long range spatial correlation.

▶ If local modeling is sufficient, then why bother with a
global model?

Tapering TGP laGP

Bad results for CSK

Figure: Predictions under CSK compared to the ideal full GP.

Impruvments exist but not neccessary streightover.

Tapering TGP laGP

Tree grpah

Figure: Tree graph (left) and partition of a 2d input space (right).
Borrowed from H. Chipman et al. (2013) with many similar variations
elsewhere; used with permission from Wiley.

Tapering TGP laGP

Random-walk proposals in tree

Figure: Random-walk proposals in tree space graphically (left four)
and as partitions (right four). Borrowed from H. Chipman et al.
(2013) with many similar variations elsewhere; used with permission
from Wiley.

Tapering TGP laGP

laGP

▶ A local approximate Gaussian process (LAGP), which the
author has been so excited to tell you about, has aspects in
common with partition based schemes.

▶ In the sense that it creates sparsity in the covariance
structure in a geographically local way.

▶ In fact, LAGP is a partitioning scheme in a limiting sense,
although delving too deeply into that connection is
counterproductive because the approach is quite different
from partitioning in spirit.

▶ The core LAGP innovation is reminiscent of what Cressie
(1992, 131–34) called “ad hoc local kriging neighborhoods”.

▶ LAGP lies squarely in prediction, which is the
primary goal in computer experiments and ML
applications.

Tapering TGP laGP

laGP

▶ For the next little bit, focus on prediction at a single
testing location x. Coordinates encoded by x are arbitrary;
it’s only important that it be a single location in the input
space X.

▶ Let’s think about the properties of a GP surrogate at x.
Training data far from x have vanishingly small influence
on GP predictions, especially when correlation is measured
as an inverse of exponentiated Euclidean distances.

▶ This is what motivates a CSK approach to inducing
sparsity, but the difference here is that we’re thinking
about a particular x, not the entire spatial field.

▶ The crux of LAGP is a search for the most useful training
data points – a subdesign relative to x – for predicting at
x, without considering/handling large matrices.

Tapering TGP laGP

Computaitonal Complexity

▶ One option is a nearest neighbor (NN) subset. Specifically,
fill Xn(x) ⊂ XN with local−n << full −N closest
locations to x.

▶ big N represent the size of a potentially enormous training
set, unwieldy for conventional GPs, and now little n
denotes a much smaller, more manageable size.

▶ Derive GP predictive equations under Y (x)Dn(x) where
Dn(x) = (Xn, Yn), pretending that no other data exist.
The best reference for this idea is Emery (2009).

▶ Prediction costs are in O(n3) and O(n2 +N) for
decomposition(s) and storage, respectively; and NNs can
be found in O(nlogN) time with k-d trees after an up-front
O(NlogN) build cost.

Tapering TGP laGP

Local neighborhoods

Figure: Local neighborhoods (colored open circles) based on NN
subdesign for predictive locations (colored filled dots) as selected from
a large design (small black dots).

Tapering TGP laGP

Topology

▶ Notice how topology of the global design XN impacts the
shape of local designs Xn(x). When two predictive
locations are nearby, as illustrated in pink and red, training
data sites may be shared by subdesigns.

▶ There are no hard boundaries whereby adjacent, arbitrarily
close predictive locations might be trained on totally
disjoint data subsets.

▶ It’s even possible to have two very close predictive
locations x ̸= x′ with the same subdesign Xn(x) = Xn(x

′)
when they share the same NN sets

▶ It can also be shown, again under some regularity
conditions, that V (x)Dn >> V (x)DN , reflecting
uncertainties inflated by the smaller design, where
σ2(x) = τ2V (x).

Tapering TGP laGP

Optimal Choice

▶ Finding the optimal n of N , of which there are (Nn)
alternatives, could be a combinatorially huge undertaking.

▶ Can we do better than NN (in terms of prediction
accuracy) without much extra effort (in terms of
computational cost)? More precisely, n-NN GP prediction
requires computation in O(n3).

▶ The answer to that question is a qualified “Yes!”, with a
greedy/forward stepwise scheme.

Tapering TGP laGP

Greedy/forward stepwise scheme

For j = n0, . . . , n :

1. given Dj(x), choose xj+1 according to some criterion;

2. augment the design Dj+1(x) = Dj(x)
⋃
(xj+1, y(xj+1)) and

update the GP approximation.

Optimizing the criterion (1), and updating the GP (2), must
not exceed O(j2) so the total scheme remains in O(n3).
Initialize with a small Dn0(x) comprised of NNs.

Tapering TGP laGP

Criteria

Gramacy and Apley (2015), G&A below, proposed the following
criterion for sequential subdesign. Given Dj(x) for particular x,
search for xj+1 ∈ XN\Xn(x) considering its impact on
predictive variance Vj(x) ≡ V (x)|Dj(x), while taking into
account uncertainty in hyperparameters θ, by minimizing
empirical Bayes mean-squared prediction error:

J(xj+1, x) = E{[Y (x)− µj+1(x; θ̂j+1)]
2|Dj(x)}

≈ Vj(x|xj+1; θ̂j) +

(
∂µj(x; θ)

∂θ

∣∣∣∣
θ=θ̂j

)2

/Gj+1(θ̂j).

Tapering TGP laGP

Derivation

J(xj+1, x) = E{[Y (x)− µj+1(x; θj+1) + µj+1(x; θj+1)− µj+1(x; θ̂j+1)]
2|Dj(x)}

= E{[Y (x)− µj+1(x; θj+1)]
2|Dj(x)}+ E{[µj+1(x; θj+1)− µj+1(x; θ̂j+1)]

2|Dj(x)}

+ 2E{[Y (x)− µj+1(x; θj+1)][µj+1(x; θj+1)− µj+1(x; θ̂j+1)]|Dj(x)}

= Vj(x|xj+1; θ̂j) + E{[µj+1(x; θj+1)− µj+1(x; θ̂j+1)]
2|Dj(x)}.

µj+1(x; θj+1)− µj+1(x; θ̂j+1) ≈

(
∂µj(x; θ)

∂θ

∣∣∣∣
θ=θ̂j+1

)
(θ − θ̂j+1)

≈

(
∂µj(x; θ)

∂θ

∣∣∣∣
θ=θ̂j

)
(θ − θ̂j+1)

Tapering TGP laGP

Derivation

E(µj+1(x; θj+1)− µj(x; θ̂j+1))
2 ≈

(
∂µj(x; θ)

∂θ

∣∣∣∣
θ=θ̂j

)2

E(θ − θ̂j+1)
2

Remember the connection of the variance with the second
derivative of the likelihood (or the Fisher information matrix).

Tapering TGP laGP

How to find the Variance

Sequential updating of the Fisher information leverages a
recursive expression of the log likelihood which follows trivially
from a cascading conditional representation of the joint
probability of the responses given the parameters:

lj+1(θ) = log p(Yj+1|θ)
= log p(yj+1|Yj , θ) + log p(Yj |θ)
= lj(θ) + lj(yj+1; θ)

where the final term represents the conditional log- likelihood
for yj+1 given Yj and θ.

Tapering TGP laGP

Fisher information Matrix

Taking (negative) second derivatives yields the following
updating equations:

{Fj+1(θ)}kl = −∂2lj(Yj |θ)
∂θk∂θl

− ∂2lj(yj+1|θ)
∂θk∂θl

Remember the connection of the variance with the second
derivative of the likelihood (or the Fisher information matrix).

{Gj+1(θ)} = {Fj+1(θ)} − E
{∂2lj(yj+1|θ)

∂θk∂θl

}

Tapering TGP laGP

Another Approximation

Unfortunately, the Student-t predictive equations preclude a
tractable analytic expectation calculation (original paper the
author is giving 2 pages of to find the second derivative. Which
they never uses!). Therefore, we approximate by employing
Gaussian surrogate equations with matched moments.

lj(yj+1; θ) = lj(yj+1|Yj , θ) ≈ −1

2
log(2π)− 1

2
log(Vj)−

(yn+1 − µj)
2

2

We take the first derivative, we take the second derivative. We
find the expected value of the negative second derivative and
finally we go back.

Tapering TGP laGP

Intuition

▶ Let’s break down elements of the MSPE criterion
J(xj+1, x). Apparently it combines variance and rate of
change of the mean at x.

▶ G&A’s presentation, and indeed the original laGP package
implementation (Gramacy and Sun 2018), emphasized
isotropic lengthscale parameters θ.

▶ Our summary here follows that simplified setup. For
extensions to vectorized θ for separable, coordinate-wise,
lengthscales see the appendix to the original paper. A
subsequently updated version of laGP supports separable
lengthscales, as detailed by authors empirical work.

	
	Tapering
	TGP
	laGP

