Statistical Emulation with Input Dimension Reduction for Complex Forward Models in Remote Sensing

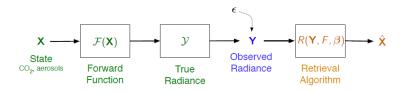
Bledar Alex Konomi

University of Cincinnati

August 14, 2025

This research is joint with: **Eric Herrison Gyamfi** (PhD student Univ. of Cincinnati), **Emily Kang** (Univ. of Cincinnati), **Gang Yang** (former PhD Student Univ. of Cincinnati), **Jon Hobbs** (Jet Propulsion Laboratory).

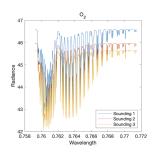
Motivation: Orbiting Carbon Observatory-2 (OCO-2)

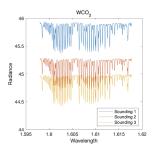


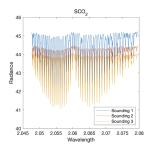
- The remote sensing observing system is a complex data-generating process with several key components.
 - The observed radiance **Y** is a function of geophysical variables, called the state vector \mathbf{X} (including CO_2).
 - The observed radiance Y and X are linked through a forward model F(X) and an error (model error+instrumental error).
 - The observed radiance is used to produce estimate of atmospheric variables, such as CO₂, based on the retrieval algorithm (using the forward model).

Example of OCO2 observed radiances

The collection of observed radiances from the three spectral bands, O₂, weak CO₂ (WCO₂) and strong CO₂ (SCO₂) at a particular time makes up a sounding. A spectral band consist of thousands of radiances at irregular wavelengths.







Uncertainty Quantification in Remote Sensing

- Probabilistic assessment and uncertainty quantification of remote sensing retrievals are crucial to answer scientific hypotheses appropriately.
- Hobbs et al. (2017) and Turmon and Braverman (2019) suggest using simulation-based experiments, known as observing system uncertainty experiments (OSUEs), to quantify various sources of uncertainty in probabilistic assessment of remote sensing retrievals.
 - Such experiments are supposed to be cost-effective as they are based on simulations.
 - The computational cost of the forward model $F(\cdot)$ makes such an experiment computationally infeasible
- We would like to build a statistical emulator $\hat{F}(\cdot)$, which does not comprise much on accuracy while enhancing computational efficiency.

Challenges

- Developing a statistical emulator for the OCO-2 forward model $F(\cdot)$ presents some challenges:
 - The outputs of F(·) are radiances at hundreds of wavelengths from three bands, the O₂ band, the weak CO₂ band, and the strong CO₂ band.
 - $F(\cdot)$ is a nonlinear complex function with high-dimensional inputs state vector; \mathbf{X} is m-dimensional with m = 52.
 - Directly emulating the relationship between high-dimensional outputs and inputs can be complicated, in terms of both computation and modeling.
 - We have n = 10,849 observations of radiances and state vectors based on which we will build a statistical emulator. This size of data can cause computational issues for a Gaussian process (GP) emulator.

Proposed Framework

- The proposed framework consists of three steps:
 - Step 1: : Functional principal component analysis through the Principal Analysis by Conditional Estimation (PACE; Yao et al., 2005) is used to model irregularly spaced radiances and represent them via estimated low-dimensional functional principal component (FPC) scores. Model the FPCA error with a computational efficient multivariate GP.
 - Step 2: : Use Gradient-based Kernel Dimension Reduction (gKDR; Fukumizu and Leng, 2014) to avoid gradient function calculation and storage used in Active Subspace (Ma et al. 2021).
 - Step 3: Construct a Gaussian process emulator using the low-dimensional pairs for the FPCA coefficients and the FPCA error.

Model Set-up

• Let $Y_{ij}(w_{ij}, \mathbf{X}_i)$ be the spectrum radiance at wavelength w_{ij} from the i^{th} sounding, i = 1, ..., n; $j = 1, ..., n_i$. We define:

$$\mathbf{Y}_i = (Y_{i1}, Y_{i2}, \dots, Y_{in_i})'; \mathbf{X}_i = (X_{i1}, X_{i2}, \dots, X_{im})'.$$

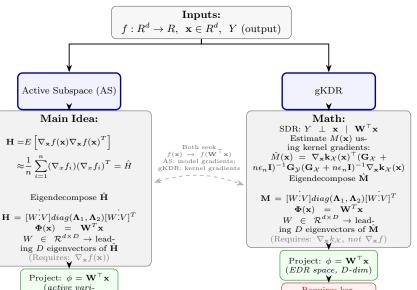
- We would like to build a statistical emulator of F(⋅) to reproduce radiance spectra given an input X.
- To achieve this, we perform dimension reduction for both input space of *X* and output space of *Y* and then build a GP emulator on the low-dimensional spaces.

FPCA via PACE + Error

• The functional output $F(\omega, \mathbf{X})$ can be approximated by a truncated representation with leading eigenfunctions that explain the majority of variability

$$F(\omega, \mathbf{X}) = \mu(\omega) + \sum_{k=1}^{K} \xi_k(\mathbf{X}) \phi_k(\omega) + e(\omega, \mathbf{X})$$

- We perform FPCA via the Principal Analysis by Conditional Estimation (PACE; Yao et al., 2005):
 - The FPC scores $\xi_k(\mathbf{X})$ are estimated through conditional expectation.
- We approximate $e(w, \mathbf{X}) \approx \tilde{e}(\cdot, \mathbf{U})$ where $\tilde{e}(\cdot, \mathbf{U})$ is modeled as a multivariate Gaussian process.



Requires kernel choice; intensive ma-

trix algebra

Model gradients often unavailable

ables, D-dim)

Gradient-based Kernel Dimension Reduction (gKDR)

 The Gradient-based Kernel Dimension Reduction (gKDR; Fukumizu and Leng, 2014) reduces the input dimension by finding a projection matrix **W** onto a p-dimensional subspace (p < m), which also accounts for the role of outputs Y, such that

$$p(\boldsymbol{\xi}|\boldsymbol{X}) = p(\boldsymbol{\xi}|\boldsymbol{W}'\boldsymbol{X})$$

It has some advantages over the active subspace method:

- gKDR uses positive definite kernels (reproducing kernel Hilbert spaces; RKHS) for nonparametric estimation of the projection matrix.
- It does not require the gradient function of $F(\cdot)$ as in the active subspace method (AS; Constantine et al., 2014; Ma et al., 2021).
- It doesn't assume any specific parametric models for $p(\xi|X)$ and can be used for multivariate outputs.
- Compared to some other dimension reduction methods, it is computationally inexpensive.

Gaussian Process (GP) Emulation

• After dimension reduction:

$$Y(w) \Rightarrow \boldsymbol{\xi} = (\xi_1, \dots, \xi_K)'$$
 and $\boldsymbol{X} \in \mathcal{R}^m \Rightarrow \boldsymbol{U} = \boldsymbol{W}' \boldsymbol{X} \in \mathcal{R}^p$

• For each ξ_k , we consider a Gaussian process in the reduced input space U:

$$\tilde{\xi}_k \sim \mathcal{NNGP}(\mu(\cdot), \sigma^2 R(\cdot, \cdot))$$

where $\mu(\cdot)$ mean function, σ^2 the variance, and $R(\cdot, \cdot)$ GP correlation.

 For the multivariate error e we consider a Partial Parallel Gaussian process (Gu and Berger 2016) in the reduced input space **U**:

$$\tilde{\mathbf{e}} \sim \mathcal{GP}(\boldsymbol{\mu}(\cdot), \Sigma \otimes R(\cdot, \cdot)),$$

where μ is a vector of mean functions, Σ a diagonal matrix, R(x,y)GP correlation.

Summary of Emulator-Construction Steps

• FPCA via PACE: For i = 1, ..., n,

$$Y_i(\omega, \mathbf{X}_i) \Rightarrow \mu(\omega); \{\phi_1(\mathbf{w}), \dots, \phi_K(\omega)\}; \boldsymbol{\xi}_i = (\xi_{i1}, \dots, \xi_{iK})$$

gKDR:

$$X_i \Rightarrow U_i$$
 where $U_i = W'X$

• NNGP emulation: For k = 1, ..., K,

$$ilde{\xi}_k | \mathbf{U} \sim \mathcal{GP}(\cdot, \cdot) \Rightarrow \hat{\xi}_k(\mathbf{U}^*)$$

PPNNGP emulation for the error:

$$ilde{\mathbf{e}}|oldsymbol{U}\sim\mathcal{MGP}(\cdot,\cdot)\Rightarrow\hat{\mathbf{e}}(oldsymbol{U}^*)$$

Reconstruction:

$$\hat{F}(\omega_j, \boldsymbol{X}^*) = \mu(\omega_j) + \sum_{k=1}^K \hat{\xi}_k(\boldsymbol{U}^*) \phi_k(\omega_j) + \hat{\boldsymbol{e}}(\omega_j, \boldsymbol{U}^*)$$

PACE, cont'd

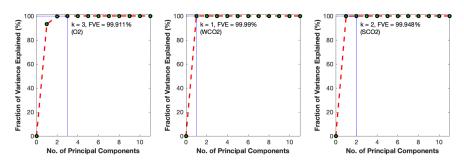


Figure: Cumulative fraction of variance explained with varying K in FPCA for the three bands.

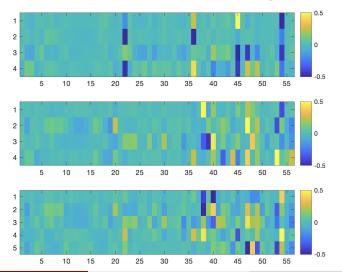
We choose K = 3, 1, and 2, for the O_2 , WCO₂, and SCO₂ bands, respectively. Despite the large variation explained the small scale important to model e(w, X)).

Choose p in gKDR

- For p = 2, 3, ..., 6, we perform gKDR and obtain the corresponding projection matrices.
- For computational efficiency the estimation process is spit in two parts:
 - First we use simple k-nearest neighbor (kNN) method to select best combination of $\{c_1, c_2\}$ (variance parameters) that gives the least error for each d
 - Then we select p such that the resulting GP emulator gives the smallest RMSPE for FPC scores in a 5-fold cross validation.
- We choose p = 5, 5, and 6 for O₂, WCO₂, and SCO₂ bands respectively.

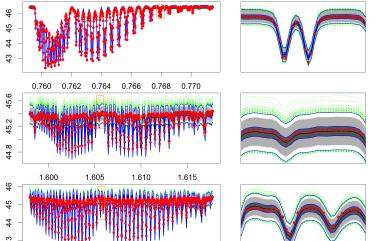
Estimated projection matrix $\hat{\mathbf{B}}_{\hat{A}}$ in gKDR

Figure 2 displays the estimated projection matrix $\hat{\mathbf{B}}_{\hat{a}}$ for 3 bands.



Reconstructing Radiances

• We treat $F^{(i)}(\cdot)$ as curves. Functional boxplots (Sun and Genton, 2011) can be used to visualize results.



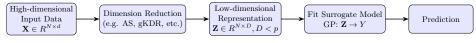
Comparing gKDR-E with AS-E

- We compare our emulator (gKDR-E) with the Active-Subspace-based emulator (AS-E) Ma et al. (2021).
- RMSPEs are calculated for each spectrum band. Our emulator outperforms AS-E. Furthermore, our work explores the approximation properties of the resulting emulator.

		AS-E			gKDR-E	
Bands	RMSPE	$P_{CI}(95\%)$	CRPS	RMSPE	$P_{CI}(95\%)$	CRPS
O ₂	0.2307	0.9186	0.1255	0.0753	0.9153	0.0305
WCO ₂	0.2507	0.9500	0.1332	0.0633	0.9450	0.0307
SCO ₂	0.4184	0.9346	0.2254	0.1503	0.8344	0.0765

Extending the Input Dimension Reduction

- Gaussian Processes (GPs) model complex systems due to predictions with uncertainty quantification (UQ).
- Limitation: GPs scale poorly in high dimensions accuracy drops and computation becomes costly (curse of dimensionality).
- Conventional approach: Dimension reduction → GP modeling (two-stage pipeline).



- Recent works: Emerging gradient-free methods exist but often lack a fully Bayesian framework (Tripathy et al. 2016 and Gautier et al. 2021).
- Our contribution: A unified, fully Bayesian GP with integrated dimension reduction.

Methodology: GP with Built-in Dimension Reduction

- Let $\mathbf{x} \in \mathbb{R}^p$ be p- high-dimensional inputs and $y = f(\mathbf{x}) : \mathcal{R}^p \to \mathcal{R}$ the response.
- Let $\mathbf{z} = W^T \mathbf{x} \in \mathbb{R}^D$ be D- low-dimensional inputs via projection matrix, $W \in \mathbb{R}^{p \times D}$ and $g(\mathbf{z}) : \mathcal{R}^D \to \mathcal{R}$ link function.
- Assume **W** defined on Stiefel manifold, $V_{p,D}$

$$\mathcal{V}_{p,D} = \{ W \in \mathcal{R}^{p \times D} : W^T W = \mathcal{I}_D \}, \quad \mathcal{I}_D = \text{identity matrix}$$

- Goal: replace costly $f(\mathbf{x})$ with $g(\mathbf{z})$, assuming $f(\mathbf{x}) \approx g(\mathbf{z})$.
- W maps $\mathbb{R}^p \to \mathbb{R}^D$ where D < p, enabling dimension reduction (DR) in GP modeling.
- For *n* input points and $Y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$, GP model is defined on $Z = (\mathbf{z_1}, \dots, \mathbf{z_n})^T \in \mathbb{R}^{n \times D}$:

$$Y \sim \mathsf{GP}(\mu_Y, \Sigma(Z)), \quad \Sigma(Z) = \tau^2[C(Z; \theta_D, W) + g]$$

• τ^2 is process variance, g is nugget, $C(Z; \theta_D, W)$ is an isotropic kernel with lengthscale θ_D and $\mu_V = 0$.

Use Deep Gaussian Process

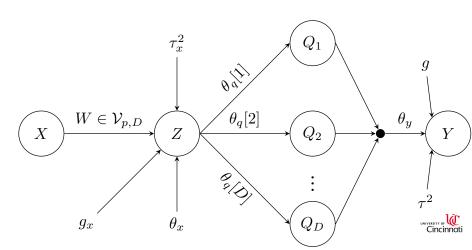
Limitations of Standard GPs:

- Assume uniform statistical behavior across input space(stationarity).
- Struggle with input-output relationship changing patterns.

Benefits of DGPs:

- Adapt to changing relationships across input regions(non-stationary).
- Stack multiple GPs layers to:
 - Model varying smoothness.
- Maintain GP strengths:
 - Accurate predictions.
 - Reliable uncertainty estimates.

Two-layer DGP Model with built-in Dimension Reduction



Two-layer DGP Model with built-in Dimension Reduction

$$egin{aligned} Q_j &\sim^{\mathsf{ind}} \mathcal{N}(0, C_{ heta_Q[j], W}(Z)), \quad Q_j \in \mathbb{R}^n, \quad W \in \mathcal{V}_{p, D}, \quad j = 1, \dots, D. \ & heta_Q = (heta_Q[1], \cdots, heta_D[D]) \in \mathbb{R}^D, \quad Q = [Q_1, \cdots, Q_D] \in \mathbb{R}^{n imes D} \ & Y \mid Q \sim \mathcal{N}(0, au^2[C_{ heta_y}(Q) + g\mathcal{I}_n]) \ & \mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid Q) \mathcal{L}(Q \mid Z) \mathcal{L}(Z \mid X) \, dZ dQ \end{aligned}$$

- Q: Latent variable and Q_1, \dots, Q_D be the latent nodes
- $C_{\theta}(\cdot)$: Covariance function with parameters θ .
- θ_Q, θ_y : Covariance hyperparameters for latent/output layers.
- g, g_x : Nugget terms (noise parameters).

• τ^2, τ_x^2 : Variance scale parameters.

Projection Matrix (W) Prior

$$W \sim \mathcal{ML}(W; F), W \in \mathcal{V}_{p,D}$$
 - Matrix Langevin (\mathcal{ML}) prior

• \mathcal{ML} -distribution with respect to Haar measure μ on $\mathcal{V}_{p,D}$:

$$\pi_{\mathcal{ML}}(W; F) = \frac{1}{c(F)} \exp(\operatorname{tr}(F^T W)), \quad c(F) = {}_{0}\mathcal{F}_{1}\left(\frac{d}{2}, \frac{F^T F}{4}\right)$$

• $_{0}\mathcal{F}_{1}\left(\frac{d}{2},\frac{F^{T}F}{4}\right)$ is hypergeometric function of order $\frac{d}{2}$ with matrix $F^{T}F/4$.

Parameterization of F via SVD:

$$F = M \Lambda V^T$$
, $\Lambda = \text{diag}(\{\lambda_1, \dots, \lambda_D\})$ where

Posterior Inference Summary

- Perform fully Bayesian inference for DGP models via MCMC.
- Posterior inference for W, Q and λ is intractable.
- Hybrid MCMC framework prioritizing UQ:
 - Metropolis-Hastings (MH) for $\{g_x, \theta_x, \theta_Q, g, \theta_v\}$.
 - Hamiltonian Monte Carlo (HMC) for W (or Z = WX).
 - Elliptical Slice Sampling (ESS) for Q_1, \dots, Q_D and λ requires no tuning as recently employed in Sauer et al. 2023.

Numerical Experiment 1: Synthetic Data

Data Generation: Employed in Tripathy 2016.

- Inputs $\mathbf{x} \sim \mathcal{N}_d(0, \mathbf{I})$: d = 10.
- Output: $Y = \mathbf{a}_0 + \mathbf{a}^T \phi + \phi^T \mathbf{A} \phi + \epsilon$, $\phi = \mathbf{W}^T \mathbf{x}$, $\epsilon \sim \mathcal{N}(0, 0.01)$.

Scenario 1: 2D Input subspace

$$\begin{aligned} \textbf{W} &= \begin{pmatrix} 0.008 - 0.184 \ 0.343 - 0.053 \ 0.081 \ 0.066 - 0.412 \ 0.654 \ 0.485 \ 0.040 \end{pmatrix}^T \\ \textbf{a}_0 &= -0.06976, \quad \textbf{a} = \begin{pmatrix} 0.4376, 0.9870 \end{pmatrix}^T, \quad \textbf{A} = \begin{pmatrix} -0.9257 - 0.3840 \\ -0.4174 - 0.6766 \end{pmatrix} \end{aligned}$$

Experimental Setup:

- \bullet n = 600 samples: training set is 80%, test set 20%.
- Baseline Methods: Active Subspace (AS), gradient kernel dimension reduction (gKDR), Gaussian process maximum likelihood estimate (GP-MLE)
- Performance metrics: root mean square prediction error (RMSPE), Nash-Sutcliffe model efficiency coefficient (NSME), Continuous Ranked Probability Score (CRPS), Score, Bayesian Information Criterion (BIC) and mean log pointwise predicted density (MLPPD)

- Baseline methods:
 - Active Subspace (AS): Identifies dominant input directions via the second-moment matrix of simulator gradients $\nabla_x f(x)$ (Constantine et al. 2014). Requires direct gradient access, making it impractical for black-box simulators.
 - qKDR: Builds on the sufficient DR framework using gradients of the input kernel, not the simulator (Fukumizu and Leng 2014).
 - **GP-MLE**: Employs MLE to estimate W and the covariance hyperparameters (Tripathy et al. 2016).
- DGP A layer (D) denotes DGP with A layer(s) and input subspace **D** where **A**, **D** = 1, 2, 3.
- DGP A layer (D) W/o represents DGP with A layer(s) and input subspace **D** without DR.
- DGP A layer (D) Truth represents DGP with A layer(s) and input subspace **D** with DR but uses the true W.

A fully Bayesian framework

Method (D)	RMSPE	NSME	CRPS	Score	BIC
AS (2)	0.2596	0.9717	0.7833	-232.3104	245.53
gKDR (2)	0.1849	0.9907	0.5637	281.7241	240.30
GP-MLE (2)	0.0946	0.9976	0.5347	449.8206	246.11
DGP 1-layer (1)	0.1055	0.9945	0.1023	260.5579	248.01
DGP 1-layer (2)	0.0815	0.9982	0.0162	715.9930	249.20
DGP 1-layer (3)	0.1272	0.9940	0.2499	712.2032	247.52
DGP 2-layer (1)	0.1437	0.9929	0.1046	643.7125	247.00
DGP 2-layer (2)	0.1100	0.9972	0.1442	266.6124	248.33
DGP 2-layer (3)	0.1592	0.9949	0.5855	540.6212	246.07
DGP 3-layer (1)	0.1937	0.9873	0.9335	206.9284	244.02
DGP 3-layer (2)	0.1821	0.9902	0.9890	146.8134	245.06
DGP 3-layer (3)	0.1941	0.9850	0.5073	694.1730	243.90
DGP 1-layer (10) W/o	0.2194	0.9821	0.2376	220.6803	240.00
DGP 2-layer (10) W/o	0.2175	0.9856	0.7510	317.6212	243.45
DGP 3-layer (10) W/o	0.2070	0.9702	0.6450	104.6729	243.98
DGP 1-layer (2) Truth	0.0706	0.9993	0.0118	324.2333	250.08
DGP 2-layer (2) Truth	0.0981	0.9941	0.1496	317.5155	246.59
DGP 3-layer (2) Truth	0.1629	0.9945	0.2646	331.7272	247.00

Numerical Experiment 2

2D Input Subspace: Employed in Sauer et al. 2023

- Inputs $x \in [0, 1]^{10}$ from Latin Hyperpercube Sample
- Projected by known 10 × 2 matrix W.
- $z = (z_1, z_2) = W^T x$ with response function given as

$$f(z) = 10z_1 \exp(-z_1^2 - z_2^2); z_j = (z_j - 0.5) \cdot 6 + 1, j = 1, 2.$$

- W is the same as numerical experiment 1
- n = 300 samples; training set is 80%, test set 20%.

A fully Bayesian framework

Simulation Study

Method (D)	RMSPE	NSME	CRPS	Score	BIC
AS (2)	0.6190	0.8329	0.5420	90.2640	601.39
gKDR (2)	0.7791	0.7562	0.6429	88.7980	596.24
GP-MLE (2)	0.6052	0.8400	0.5113	91.0290	604.08
DGP 1-layer (1)	0.4795	0.9035	0.5938	104.6915	615.28
DGP 1-layer (2)	0.5302	0.8873	0.4549	63.3460	612.07
DGP 1-layer (3)	0.5948	0.7691	0.5863	72.6261	608.65
DGP 2-layer (1)	0.4778	0.9079	0.4097	126.6638	616.90
DGP 2-layer (2)	0.4217	0.9192	0.4490	100.6576	618.34
DGP 2-layer (3)	0.5616	0.7897	0.5677	73.6139	610.71
DGP 3-layer (1)	0.4823	0.8937	0.3705	87.8325	616.10
DGP 3-layer (2)	0.4045	0.9240	0.4178	128.5832	619.20
DGP 3-layer (3)	0.5221	0.8895	0.5377	104.7551	615.37
DGP 1-layer (10) W/o	0.6761	0.7635	0.7710	80.3565	600.03
DGP 2-layer (10) W/o	0.6028	0.8459	0.6382	54.3635	603.22
DGP 3-layer (10) W/o	0.6339	0.8096	0.6329	69.3009	601.48
DGP 1-layer (2) Truth	0.4344	0.9150	0.4994	53.8692	617.46
DGP 2-layer (2) Truth	0.4917	0.8929	0.5207	90.0178	616.95
DGP 3-layer (2) Truth	0.3215	0.9371	0.5308	113.6072	620.88

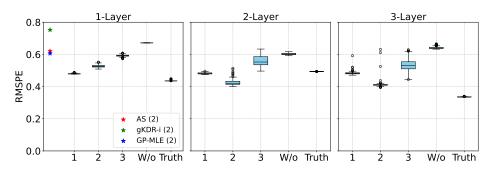


Figure: RMSPE comparisons across different method for train size 240

Discussion and Conclusion

Simulation Results:

- Models with built-in DR consistently outperformed models W/o.
- DGPs with appropriate layer depth adapted well, regardless of the complexity.
- Very deep models (3 layers) sometimes showed diminishing returns or overfitting in low-complexity settings.
- Performance gains from added depth were more apparent when the response surface was complex.

Conclusion:

- Model selection is key since data complexity is not known beforehand.
- Start with a moderate number of DGP layers and D, tune for the data at hand.
- Fully Bayesian DGPs with dimension reduction provide flexible with modeling and robust performance across a range of complexities.

Thank You for the Attention! Questions+Answers?

References

- P. Ma*, A. Mondal, **B. A. Konomi**, J. Hobbs, J. Song, E. L. Kang, "Statistical Emulation for High-Dimensional Functional Outputs in Large-Scale Observing System Uncertainty Experiments", Accepted to *Technometrics*, 2021.
- K. Fukumizu C. Leng, "Gradient-Based Kernel Dimension Reduction for Regression", Journal of the American Statistical Association, 2014.
- P. G. Constantine, E. Dow, Q. Wang, "Active subspace methods in theory and practice: applications to kriging surfaces", SIAM Journal on Scientific Computing, 2014.
- Datta, A. and Banerjee, S. and Finley, A. O. and Gelfand, A. E., "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets", Journal of the American Statistical Association, 2016.
- Gramacy, R.B. and Apley, D. W., "Local Gaussian Process Approximation for Large Computer Experiments", Journal of Computational and Graphical Statistics, 2015.